SOIL CHARACTERISTICS A preliminary geotechnical investigation was conducted by Leighton and Associates, Inc. in May 2008 for the project site.³ Based on the borings performed on-site, soils within the project site generally consist of documented and undocumented artificial fill, quaternary-aged alluvium, colluvium, and sandstone from the Oso member of the Capistrano Formation. Within the northern portion of the site, artificial fill consisted of medium dense to dense, brown to grayish brown, dry to slightly moist, fine to coarse grained sand to clayey, silty sand to depths ranging from approximately 1 to 75.2 feet. Within the areas of the water treatment facility tanks, fill was not documented, however is expected to consist of onsite derived sand and silty sands with a trace of clay and concretions. Within the southern portion of the site, undocumented fill was encountered, consisting of loose, dark brown to grey, dry to moist, fine to coarse grained sand to silty clayey sand, with fine to coarse gravel, cobbles and small boulder sized concretionary sandstone and concrete debris. The alluvium encountered generally consists of loose zones of moist, fine to coarse grained sand with gravel sized sandstone connections. Groundwater was not encountered at any borings or test pits to the maximum depth of 80.4. Historically high groundwater table is estimated to be at a depth of approximately 10 to 20 feet below ground surface within the canyon bottoms. # **EXISTING DRAINAGE CONDITIONS** Under existing conditions, the majority of the site slopes generally toward the east and southeast, towards Serrano Creek along the southeastern project boundary. The site previously was graded with a variety of basins, ridges and terraced slopes. Significant to the site is a deep ravine on the northeasterly portion of the property. A large portion of the development site drains to this heavily wooded and brushed tributary to Serrano Creek. A small drainage area in the northern portion of the site, the current drive approach to the site from Biscayne Bay Drive, sheet flows toward Biscayne Bay Drive where flow is picked up via an existing street catch basin. Two areas on the west side of the development site sheet flow westerly into undeveloped land. There is a proposed tract over a portion of the undeveloped land. There is no run-on to the site from outside areas. The majority of the site currently flows to the east and empties into Serrano Creek via three existing pipe discharge points. Three small areas also sheet flow directly to Serrano Creek. Those areas are not a part of the development area and their drainage patterns will not be changed. In addition, a portion of the west side of the current IRWD buildings flows to existing developed areas and their existing terrace drains. There areas are not part of the development area and their flow pattern will not change. Per the Los Alisos Water District plans previously cited and per visual inspection of the site, there are a number of basins and attendant pipes that currently serve the site. Those basins, risers, outlets and pipes are in various states of repair. Many of the basins are overgrown with brush and several of the outlet pipes were found to be partially buried by silt build-up. There are three outlets to Serrano Creek from the site in addition to the small areas that sheet flow to the creek. The majority of these facilities will be demolished; however several will be utilized in the development plan. SERRANO SUMMIT 15 SITE DESCRIPTION ³ Leighton and Associates, Inc. (2008, May 7). DRAFT Preliminary Geotechnical Exploration Report for the Proposed Residential Development, Civic Center, and Park at Former IRWD Site, City of Lake Forest, California. # **PROPOSED DRAINAGE CONDITIONS** Under proposed conditions, new storm drain facilities will be constructed to drain runoff from the new development areas and connect to the existing facilities located in the southern portion of the site. The proposed system will include approximately 2 areas for underground storage and infiltration within the park areas to reduce runoff and provide treatment of the water quality design capture volume. Additional areas may be added pending geotechnical investigations and identification of favorable infiltration areas. One dual purpose water quality-detention basin will be located in the southern portion of the site between the existing storage reservoirs to reduce peak flow runoff from the site as well as provide water quality benefits. This basin will also include dry wells to maximize infiltration of the 2-year volume increase while providing additional water quality benefits. A second detention basin will be located immediately south of the proposed civic Center site. An underground storage system for infiltration and potential reuse is also being considered within the Civic Center site to provide runoff reduction for the 2-year storm flow and water quality design capture volume. Further details on the proposed detention basins and their hydrologic function will be documented in the Final WQMP. The existing storm drain system draining the existing emergency storage reservoirs and other existing areas not included in the development areas will stay 'as is' and continue to drain as in the existing hydrology to the ravine. An existing storm drain pipe drains the ravine into Serrano Creek. # LAND USE AND ZONING Under existing conditions, the project site is zoned for general agriculture (A1). Under proposed conditions, the project site will be zoned for medium-density residential and open space uses. # 3.3 EXISTING WATER QUALITY ISSUES As discussed in Section 2.2, the project will result in an increase in impervious surfaces as compared to existing conditions, from 10% to approximately 45% impervious. Although the project site is located near the upper reaches of Serrano Creek, the Creek is not designated as an Environmentally Sensitive Area (ESA) according to the OC DAMP. However, since San Diego Creek is listed as impaired on the 303(d) list of impaired water bodies, it is designated as an Environmentally Sensitive Area (ESA) according to the OC DAMP. There are no designated Areas of Special Biological Significance (ASBS) within the vicinity of the project site. If any additional water quality issues or problems are discovered at any stage of the project's improvements, this condition will be evaluated and mitigated. In conformance with the Countywide Water Quality Management Plan (WQMP) and National Pollutant Discharge Elimination System (NPDES) Drainage Area Management Plan (DAMP), the Serrano Summit Project will require the incorporation and implementation of site design, source control, and treatment control Best Management Practices (BMPs) to adequately address all anticipated and potential pollutants, if any, within the site, including any water quality issues mentioned above. The proposed BMPs for the Project are discussed further in Section 4 of this WQMP. # 4.0 BEST MANAGEMENT PRACTICES The WQMP shall identify Best Management Practices (BMPs) that will be used on-site to control predictable pollutant runoff, and shall identify, at a minimum, the measures specified in the Countywide Water Quality Management Plan (WQMP) and NPDES Drainage Area Management Plan (DAMP), the assignment of long-term maintenance responsibilities (specifying the developer, parcel owner, maintenance association, lessee, etc.) and the locations of all structural BMPs. Projects designated as Priority Projects are required to incorporate and implement site design, source control, and treatment control BMPs, unless not applicable due to the project characteristics. Site design BMPs help minimize the introduction or generation of potential pollutants from a facility's operations. Source control BMPs are operational practices that reduce potential pollutants at the source, and include both structural and routine non-structural practices. Treatment control BMPs remove pollutants of concern from storm water-runoff and must be located and designed appropriately so as to infiltrate, filter, and/or treat the required runoff volume or flow prior to discharging into receiving waters. Selection of treatment control BMPs is based on the pollutants of concern of the project site (identified under Section 2.2) and the BMP's ability to effectively mitigate those pollutants, in consideration of site conditions and constraints. Further details on the Project's selected treatment control BMPs are provided in Section 4.3. The approach to water quality treatment for the Project includes incorporation of site design/low impact development (LID) strategies and source control measures throughout the site in a systematic manner that maximizes the use of LID features to provide treatment of storm water and reduce runoff. In accordance with the 4th Term MS4 Storm Water Permit (Order R8-2009-0030), the use of LID features will be consistent with the prescribed hierarchy of treatment provided in the Permit, including infiltration, evapotranspiration, harvest/re-use and bio-treatment. Infiltration within the development area will be promoted within the proposed park areas as well within and adjacent to the large water quality / detention basin. Proposed features include underground infiltration units and drywells. Exact volumes infiltrated by these BMPs will be based on the infiltration feasibility criteria currently in development by the County of Orange and Co-Permittees associated with the Model WQMP updates with the 4th Term MS4 Permit re-issuance. Where feasible, LID features will be designed to infiltrate and/or reuse treated runoff on-site in accordance with feasibility criteria as defined in the new Model WQMP (expected July 1, 2010). Infiltration on-site will be limited based on a number of factors that will influence the amount of allowable infiltration of the design capture volume (SQDV) including measured percolation rate of
soil, location of building foundations, and other geotech concerns (e.g., expansive soils, presence of clay layers, etc.). If the site specific infiltration rates do not provide sufficient ability infiltrate the design capture volume and 2-year volume control requirements (approximately 3.3 acre-ft), these flows will be discharged to Serrano Creek below critical thresholds to avoid downstream harm to habitats or channel stability. Critical thresholds will be identified through the use of regional hydromodification studies being developed by the County of Orange to determine maximum low flow discharges to local creeks to avoid impacts (i.e. controlled discharge of no more than 110% of the 2-year existing flow rate) or site specific studies on Serrano Creek which will define recommended low flow discharge rates. All LID features identified in this report are preliminary in nature but have been sized to show their relative footprint requirements for technical planning purposes (siting, treatment volumes, typical profiles, etc.). Detailed drainage calculations, grading, and confirmation of sizing to occur during the detailed design phase and subsequent WQMP documentation. # 4.1 SITE DESIGN BMPs The following table describes the site design BMPs used in this project and the methods used to incorporate them. Careful consideration of site design is a critical first step in storm water pollution prevention from new developments and redevelopments. Details on site design BMPs implemented at the project will be supported by construction level documents in the final WQMP and prior to grading permit(s) issuance by the City. | DESIGN CONSIDERED: | YES | NO | DESCRIPTION | |--|-------------|----|--| | MINIMIZE IMPERVIOUS
AREA / MAXIMIZE
PERMEABILITY (C-FACTOR
REDUCTION) | | | Impervious surfaces have been minimized by incorporating landscaped areas over substantial portions of the site including common areas, parkways, medians, in addition to larger parks and open space areas. The streets and sidewalks will be designed with minimum width requirements to minimize impervious surfaces where feasible. | | MINIMIZE DIRECTLY
CONNECTED IMPERVIOUS
AREAS (DCIAs) (C-FACTOR
REDUCTION) | \boxtimes | | All dry weather flows and low flows from the residential areas and streets will be routed through water quality basins to minimize the direct connection of runoff from impervious areas to downstream offsite areas. | | CREATE REDUCED OR "ZERO DISCHARGE" AREAS (RUNOFF VOLUME REDUCTION) | \boxtimes | | Underground storage areas for infiltration and dry wells are proposed to provide runoff reduction benefits. In addition, water quality basins that combine extended detention, wetland vegetation and bottom stage filter drain will be utilized to promote reduced runoff volumes and attenuated flow rates. Lastly, where acceptable, porous pavement and porous landscape retention/detention will also utilized in the detailed site design to provide additional runoff reduction measures. | | CONSERVE NATURAL AREAS
(C-FACTOR REDUCTION) | | | Native trees and shrubs will be preserved in natural open space areas and native or drought tolerant plants will be used in development plant palettes. | # 4.2 SOURCE CONTROL BMPs The table below indicates all BMPs to be incorporated in the project. For those designated as not applicable (N/A), a brief explanation why is provided. | | CORPORATED ROUTINE DN-STRUCTURAL BMP: | YES | N/A | DESCRIPTION | |----|--|-------------|-----|---| | NI | HOMEOWNER/ TENANT
EDUCATION | \boxtimes | | The HOA will ensure that all homeowners will be given a copy of the recorded CC&Rs which will contain details on educational materials and restrictions to reduce pollutants from reaching the storm drain system. The developer shall establish requirements that these educational materials are distributed by the HOA to all members of the HOA, and periodically thereafter by the HOA after the first sale of the units. Examples of the environmental awareness materials are provided in Section 7. | | N2 | ACTIVITY RESTRICTIONS | \boxtimes | | Within the Master CC&Rs created by the developer, language shall be included to restrict activities that have the potential to create adverse impacts on water quality. Activities include but are not limited to: the handling and disposal of contaminants, trash management and litter control, irrigation and landscaping practices, fertilizer applications and household waste management practices. | | N3 | COMMON AREA
LANDSCAPE
MANAGEMENT | | | Management programs will be designed and implemented by the HOA to maintain all the common areas within the project site. These programs will cover how to reduce the potential pollutant sources of fertilizer and pesticide uses, utilization of water-efficient landscaping practices and proper disposal of landscape wastes by the HOA and/or contractors. | | | CORPORATED ROUTINE
DN-STRUCTURAL BMP: | YES | N/A | DESCRIPTION | |-----|---|-------------|-------------|---| | N4 | BMP MAINTENANCE | \boxtimes | | The HOA will be responsible for the implementation and maintenance of each applicable non-structural BMP, as well as scheduling inspections and maintenance of all applicable structural BMP facilities through its staff, landscape contractor, and/or any other necessary maintenance contractors. The City shall be responsible for maintenance of BMPs within the public areas of the project. See Section 5.0 for further details. | | N5 | TITLE 22 CCR
COMPLIANCE | | | Not applicable. The project site will not require Title 22 CCR compliance since the operation of the project site will not generate of hazardous wastes as part of its routine operation. As previously mentioned, operations associated with the existing IRWD facilities are covered under separate NPDES permits and are not documented in this WQMP. | | N6 | LOCAL WATER QUALITY PERMIT COMPLIANCE | | \boxtimes | The City of Lake Forest does not issue water quality permits. | | N7 | SPILL CONTINGENCY
PLAN | | \boxtimes | Not applicable. The project site will not handle or dispose of hazardous materials as part of its routine operations. See previous notes regarding IRWD operations. | | N8 | UNDERGROUND
STORAGE TANK
COMPLIANCE | | \boxtimes | Not applicable. The project site will
not handle or dispose of hazardous
materials as part of its routine
operations. See previous notes
regarding IRWD operations. | | N9 | HAZ-MAT DISCLOSURE
COMPLIANCE | | | Not applicable. The project site will not handle or dispose of hazardous materials as part of its routine operations. See previous notes regarding IRWD operations. | | N10 | UNIFORM FIRE CODE
IMPLEMENTATION | | \boxtimes | Not applicable. The project site will
not handle or dispose of hazardous
materials as part of its routine
operations. See previous notes
regarding IRWD operations. | | | CORPORATED ROUTINE ON-STRUCTURAL BMP: | YES | N/A | DESCRIPTION | |------------------|--|-------------|-------------|---| | NII | COMMON AREA LITTER
CONTROL | \boxtimes | | The HOA will be responsible for performing trash pick up and sweeping of littered common areas on a weekly basis or whenever necessary. Responsibilities will also include noting improper disposal materials by the public and reporting such violations for investigation. The City shall be responsible for common area litter control within the public areas of the project. | | N12 | EMPLOYEE TRAINING | \boxtimes | | All employees of the HOA and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, housekeeping practices, etc. | | N13 | HOUSEKEEPING OF LOADING DOCKS | | \boxtimes | There are no loading docks proposed for the site. | | N14 | CATCH BASIN
INSPECTION | \boxtimes | | All catch basin inlets shall be
inspected and maintained by the HOA at least once a year, prior to the rainy season, no later than October 1P ^{s:P} of each year. The City shall be responsible for inspecting and maintaining all public catch basins and drainage facilities. | | N15 | STREET SWEEPING
PRIVATE STREETS AND
PARKING LOTS | \boxtimes | | The HOA shall be responsible for the street sweeping of all private drive aisles and parking areas within the project quarterly, and prior to the rainy season, no later than October 1st of each year. The City shall be responsible for sweeping all public streets and parking lots. | | N17 ⁴ | RETAIL GASOLINE
OUTLETS | | \boxtimes | No retail gasoline outlets are proposed. | $^{^{\}rm 4}$ There is no BMP with the designation N16. | INCORPORATED ROUTINE | YES | N/A | DESCRIPTION | |--|-------------|-------------|--| | STRUCTURAL BMP: STORM DRAIN STENCILING AND SIGNAGE | | | The developer will be responsible for the stenciling of all catch basins to include a legible message such as "Drains to Ocean" or "Drains to Santa Ana River." The HOA will be responsible for maintaining and replacement of signage when necessary. | | PROPER OUTDOOR HAZARDOUS
MATERIAL STORAGE DESIGN | | \boxtimes | No outdoor hazardous material storage areas are proposed. | | PROPER TRASH STORAGE
DESIGN | | | All trash and waste shall be stored in containers that have lids or tarps to minimize direct precipitation into the containers. The storage areas will be paved, covered, and either be sloped or include a barrier to keep drainage out of the storm drain. Locations will be provided in the Final WQMP. | | EFFICIENT IRRIGATION SYSTEMS
AND LANDSCAPE DESIGN | \boxtimes | | The developer will be responsible for the installation and maintenance of all common landscape areas utilizing similar planting materials with similar water requirements to reduce excess irrigation runoff. The developer will be responsible for implementing all efficient irrigation systems for common area landscaping including but not limited to provisions for water sensors and programmable irrigation cycles. The irrigation systems shall be in conformance with water use efficiency guidelines. | | PROTECT SLOPES AND
CHANNELS | \boxtimes | | The developer will be responsible for the vegetative establishment on all manufactured or disturbed slopes with a mixture of native species and approved ornamentals by the City of Lake Forest. | | SPECIFIC LA | ND USE | / PROJE | CT TYPE BMPs | | LOADING DOCK AREAS | | \boxtimes | No loading dock areas are proposed. | | MAINTENANCE BAYS | | \boxtimes | No maintenance bays are proposed. | | EQUIPMENT WASH AREAS | | \boxtimes | No equipment wash areas are proposed. | | VEHICLE WASH AREAS | | \boxtimes | No vehicle wash areas are proposed. | | INCORPORATED ROUTINE STRUCTURAL BMP: | YES | N/A | DESCRIPTION | |---|-------------|-------------|--| | OUTDOOR PROCESSING AREAS | | \boxtimes | No outdoor processing areas are proposed. | | FUELING AREAS | | \boxtimes | No fueling areas are proposed. | | HILLSIDE LANDSCAPING | \boxtimes | | The developer will be responsible for the vegetative establishment on all manufactured or disturbed slopes with a mixture of native species and approved ornamentals by the City of Lake Forest. | | WASH WATER CONTROLS FOR FOOD PREPARATIONS AREAS | | \boxtimes | No food preparation areas are proposed. | | COMMUNITY CAR WASH RACKS | | \boxtimes | No community car wash racks are proposed. | The routine structural and non-structural BMPs have been selected in the above tables to address the anticipated and potential pollutants generated by the project site's land uses. The implementation of these BMPs is designed to reduce the pollutants associated with the land uses discussed in Section 2.3 and shown in the table below. With the implementation of these routine source control BMPs, the Project area will effectively minimize its potential to generate pollutants that may potentially cause water quality impacts to the downstream receiving water body. | SOURCE CONTROL BMP | TARGET POLLUTANTS | |---|---| | ACTIVITY RESTRICTIONS AND TENANT EDUCATION | Heavy metals, oil & grease, bacteria, nutrients | | COMMON AREA LANDSCAPE MANAGEMENT | Nutrients, pesticides, sediments, oxygen demanding substances | | SPILL CONTINGENCY PLAN | Metals, oil and grease, organics | | COMMON AREA LITTER CONTROL
AND TRASH STORAGE AREAS | Trash and debris, organics | | EMPLOYEE TRAINING | Heavy metals, trash and debris, oil and grease, oxygen demanding substances. | | CATCH BASIN INSPECTION | Sediment, particulates, heavy metals, trash and debris | | STREET SWEEPING | All pollutants, particularly trash and debris | | STORM DRAIN SIGNAGE | All pollutants, particularly trash and debris | | EFFICIENT IRRIGATION AND LANDSCAPE DESIGN | Nutrients, pesticides, sediments, oxygen demanding substances | | SLOPE PROTECTION AND
HILLSIDE LANDSCAPING | Sediment and debris, nutrients and pesticides (used in conjunction with landscape design) | # 4.3 TREATMENT CONTROL BMPs The following table describes the treatment control BMPs that will be incorporated into this project. The treatment BMPs in this table are included in the project design to mitigate any pollutants of concern that were identified in the water quality planning process. The table also describes why a BMP was not chosen for the project. If necessary, details describing the design of the BMPs will be provided below. | INCORPORATED TREATMENT CONTROL BMP: | YES | NO | IF NO, DESCRIBE WHY | |-------------------------------------|-------------|-------------|--| | VEGETATED (GRASS) STRIPS | | | Other treatment BMP chosen. | | VEGETATED (GRASS) SWALES | \boxtimes | | Bioswales are proposed to provide pre-treatment of runoff from the disturbed areas of the Passive Park. Treatment will be provided in conjunction with rain gardens, discussed below. Areas left undisturbed will retain native vegetation and therefore will not require treatment. | | PROPRIETARY CONTROL
MEASURES | \boxtimes | | Hydrodynamic separators (e.g., CDS Units or equivalent) will be placed within the on-site storm drain system to provide pre-treatment of flows prior to discharging into the downstream water quality / detention basin for further treatment. | | WATER QUALITY / DETENTION
BASINS | | | One dual purpose water quality / detention basin will be located in the southern portion of the site between the existing IRWD reservoirs to provide treatment and detention of storm water runoff from the residential development areas. A second basin will also be located south of the proposed Civic Center Site. Both basins will include a bottom stage filter drain with sub-drain system to improve the treatment removal efficiencies. In addition, underground detention and infiltration reservoirs will be located below the proposed neighborhood parks as well as within the Civic Center for additional storage and infiltration of runoff. | | CONSTRUCTED WETLAND | | \boxtimes | Other treatment BMP chosen. | | INCORPORATED TREATMENT CONTROL BMP: | YES | ИО | IF NO, DESCRIBE WHY | |-------------------------------------|-------------|-------------|---| | SAND FILTER | | \boxtimes | Other treatment BMP chosen. | | BIORETENTION/RAIN GARDENS | × | | Rain gardens are proposed to provide treatment of runoff from the disturbed areas of the Passive Park. Treatment will be provided in conjunction with bioswales discussed above. Areas left undisturbed will retain native vegetation and therefore will not require treatment. | | POROUS PAVEMENT DETENTION | \boxtimes | | To be determined under final site design | | POROUS LANDSCAPE
DETENTION | \boxtimes | | To be determined under final site design. | | Infiltration basin | \boxtimes | | Underground storage reservoirs with infiltration capacity will be utilized in the park areas to manage runoff from the development areas. | | INFILTRATION TRENCH | | \boxtimes | Other treatment BMP chosen. | | MEDIA FILTER | | \boxtimes | Other treatment BMP chosen. | | DRYWELLS | \boxtimes | | Drywells are proposed located within and adjacent to the
residential water quality / detention basin to allow infiltration of first-flush runoff from the development. | The table below lists the general pollutant removal efficiencies for Treatment Control BMP Categories (from the Orange County Model WQMP). | TREATMENT CONTROL BMP SELECTION MATRIX | | | | | | | | | | |--|------------------------|-----------|----------------------|-------------------|-----------------------------------|-----------------------|-------------------|------------|--| | | SEDIMENT/
TURBIDITY | NUTRIENTS | ORGANIC
COMPOUNDS | TRASH &
DEBRIS | OXYGEN
DEMANDING
SUBSTANCES | BACTERIA &
VIRUSES | OIL AND
GREASE | PESTICIDES | | | Biofilters / Vegetated Swales | Н/М | L | U | L | $\mathbb{E}_{\mathbf{L}_{1}}$ | U | Н/М | U | | | Detention Basins ¹ | М | М | U | М | М | U | М | U | | | Infiltration Basins ² | H/M | H/M | U | U | H/M | H/M | U | U | | | Wet Ponds / Wetlands ³ | H/M | H/M | U | U | Н/М | U | U | U | | | TREATMENT CONTROL BMP SELECTION MATRIX | | | | | | | | | | |--|------------------------|-----------|----------------------|-------------------|-----------------------------------|-----------------------|-------------------|------------|--| | | SEDIMENT/
TURBIDITY | NUTRIENTS | ORGANIC
COMPOUNDS | TRASH &
DEBRIS | OXYGEN
DEMANDING
SUBSTANCES | BACTERIA &
VIRUSES | OIL AND
GREASE | PESTICIDES | | | Sand Filter/ Filtration ⁴ | H/M | L/M | H/M | H/M | Н/М | H/M | Н/М | U | | | Water Quality Inlets | L | L | L | М | L | L | М | L | | | Hydrodynamic Separators ⁵ | H/M* | L | L | H/M | L | L | L/M | L | | | L: Low removal efficiency M: Medium removal efficiency H: High removal efficiency U: Unknown removal efficiency L: Low Lincludes extended/dry detention basins with 36-48-hour drawdown time Lincludes infiltration basins, infiltration trenches, and porous pavements Lincludes extended/dry detention basins with 36-48-hour drawdown time Lincludes infiltration basins, infiltration trenches, and porous pavements trenches, and porous pavements Lincludes infiltration trenches, and porous pavements Lincludes infiltration trenches, and porous pavements Lincludes infiltration trenches, and porous pavements Lincludes infiltr | | | | | | | | | | # **HYDRODYNAMIC SEPARATION PRE-TREATMENT** Two hydrodynamic separation devices (CDS unit or equivalent) will be located within the proposed storm drain system to pre-treat runoff prior to discharging into the underground storage & infiltration features and water quality detention basin, thereby reducing the amount of trash, debris, and sediment discharging into the basin. A CDS unit is a pre-cast vortex separation system that removes debris, trash, oil/grease, sediment and parking lot particulates from storm water. As water enters the underground storm drain system, it filters through the CDS unit and flows through a vortex sieve which traps sediment and debris while oil/grease floats to the top where an US EPA approved absorbent removes the oil and grease from the storm water. CDS units are effective at removing 80% TSS and 100% of floatables and neutrally buoyant materials, plus oil and grease. #### WATER QUALITY / DETENTION BASIN A multi-functional water quality and detention basin is proposed at the downstream end of the project located adjacent to the existing IRWD reservoirs. A second detention basin will be located along the eastern project boundary, south of the proposed Civic Center site. Detention basins are areas where excess storm water is stored or held temporarily and then slowly drains via infiltration, evaporation, and via a controlled outlet. As site runoff collects in the basin, contaminants such as nutrients, trash, and metals are settled or filtered out via infiltration, creating added benefit. The basin will have a water quality storage depth of 3 feet, and will be vegetated with drought tolerant species such as alkali heath, saltgrass, alkali mallow, and saltbush shrubs. Temporary irrigation would likely be utilized to establish the vegetation due to long periods without rainfall. A portion of the basin floor near the outlet structure will also incorporate a bottom stage filter drain to provide additional treatment of the design capture volume prior to discharge into Serrano Creek. A typical filter drain is located at the low end of the water quality basin and includes an approximately 20" sand layer over an 8" gravel layer. Treated water is collected into a sub-drain system before ultimately discharging into the creek. The use of the filter drain provides additional high level treatment and additional flow attenuation. Further details on the basin design will be provided in the Final WQMP. # **UNDERGROUND STORAGE & INFILTRATION** Runoff from portions of the residential areas of the project site will be directed to underground storage systems (e.g., StormTech, Contech ChamberMaxx or equivalent) located below the proposed neighborhood parks (Lots 15 & 16). These systems consist of bottomless HDPE storm water chambers that collect water and slowly release a portion into the storm drain system and allow the remaining portion to infiltrate into the subsoils. In addition, underground storage and infiltration will be provided at the Civic Center site for treatment of flows. Infiltration within the Civic Center site drainage area will likely be limited to protect the large manufactured slope at the southern end but storage and reuse options are also available for this area. This method in conjunction with the CDS units for pre-treatment should adequately treat anticipated pollutants such as sediments, nutrients, organic compounds, trash and debris, hydrocarbons (i.e., oil and grease), and metals. ### **DRYWELL INFILTRATION** Drywells are underground storage facilities that receive runoff and allows it to infiltrate to soil via gravity. Drywells typically consist of a structural chamber or vertical perforated pipe. Specifically, the MaxWell Plus system incorporates pretreatment of runoff through a separate settling chamber that traps trash, floating debris, oil and grease, and large sediment. A debris shield and screens prevent trapped pollutants from re-suspension and from entering the lower well. Pre-treated flows are then diverted to a secondary settling chamber and treated runoff is diverted to the drywell and surrounding soil. One standard MaxWell Plus system can treat up to 2 acres of contributing impervious area drainage and 5 acres of pervious area tributary, with pre-treatment flow rate of 0.25 cfs. With the incorporation of pretreatment and infiltration, drywells have high removal effectiveness for all storm water pollutants of concern. An estimated 3-5 drywells (Maxwell Plus or equivalent) are proposed for the project site located within and adjacent to the residential water quality / detention basin, providing treatment of runoff from the development not previously infiltrated by the underground infiltration units. Higher flows will bypass the drywell units and discharge into the water quality / detention basin for additional treatment and detention. Drywell units may also be designed into the storage and infiltration sub-surface features to assist with the infiltration of project runoff. Final number, locations, and design of the systems will be documented in the final WQMP based on results of percolation testing and infiltration feasibility screening criteria. #### **BIOSWALES & RAIN GARDENS** A combination of vegetated bioswales and rain gardens are proposed to provide treatment of the disturbed areas within the Passive Park (PA17). Areas that are left undisturbed will remain as under existing conditions, including native vegetation areas, and therefore will not require treatment. Specific locations and sizing of the bioswales and rain gardens is pending, and will be provided in the Final WQMP. Bioswales are treatment BMPs that provide
filtration through a grassed or vegetated bottom and the vegetation provides a mechanism for retarding surface runoff and filtering flows to drop sediments, fines, debris, and organics. Swales also provide treatment of runoff within the upper soil zone where biological and chemical reactions occur to absorb pollutants entering from the top soil. Due to the slow velocity of runoff through the swale, fine particulates can settle in the bottom of the channel and the runoff will infiltrate into the soil profile where the vegetation will uptake nutrients (e.g. nitrogen and phosphorous), microbial contaminants, oil and grease, and pesticides. Bioswales upstream of rain gardens provide a effective filtering mechanism for flows prior to infiltrating through the rain garden soil profile. Rain gardens are small, vegetated depressions that promote filtration and infiltration of storm water runoff. They combine shrubs, grasses, and flowering perennials in depressions (approximately 6 to 8 inches deep) that allow water to pool, infiltrate or evaporate and/or slowly drain out within 48 to 72 hours. Additional design details include a soil planting depth between 18 inches to 4 feet deep (depending on plants selected), with a 2-3 inch mulch layer on top to protect from erosion. Perforated underdrains may be provided for soils with low infiltration rates and in areas with high groundwater levels to discharge treated water back into the storm drain system. ### FLOW-BASED TREATMENT BMP SIZING In accordance to the Countywide Model WQMP, the flow-based treatment BMPs will be sized to treat the maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour for each hour of a storm event, as determined from the local historical rainfall record. This is termed the Stormwater Quality Design Flow. The Stormwater Quality Design Flow (SQDF), is thus determined by the following equation: $$SQDF = C * I * A_{TOTAL}$$ Where: C = coefficient of runoff (see Appendix 1) rainfall intensity per OC DAMP (see Appendix 1) A_{TOTAL} = total area to be treated Calculations are summarized in the tables below. | SQDF ¹ SUMMARY – CDS UNITS | | | | | | | | | | |---|------|-----|------|-------|------|--|--|--|--| | BMP Location Runoff Intensity Drainage Unit Coefficient (in/hr) Area (acres) Conversion ² SQDF (cfs) | | | | | | | | | | | CDS Unit #1 | 0.68 | 0.2 | 14.6 | 1.008 | 1.99 | | | | | | CDS Unit #2 | 0.68 | 0.2 | 13.4 | 1.008 | 1.83 | | | | | ⁽¹⁾ Calculations are based on Per Orange County Drainage Area Management Plan (DAMP), Table A-1, Exhibit 7.11 – Attachment A. ⁽²⁾ Converts inches per hour to feet per second | SQDF ¹ SUMMARY – PASSIVE PARK BIOSWALES | | | | | | |---|------|-----|-------|-------|-----| | BMP Location Runoff Intensity Drainage Unit Coefficient (in/hr) Area (acres) Conversion ² SQDF (cfs) | | | | | | | Passive Park | 0.23 | 0.2 | 2 (3) | 1.008 | 0.1 | ⁽¹⁾ Calculations are based on Per Orange County Drainage Area Management Plan (DAMP), Table A-1, Exhibit 7.11 – Attachment A. # **VOLUME-BASED TREATMENT BMP SIZING** In accordance to the Countywide Model WQMP, the volume-based treatment BMPs will be sized to treat the volume of runoff produced from a 24-hour 85th percentile storm event, as determined from the local historical rainfall record. This is termed the Stormwater Quality Design Volume. The Stormwater Quality Design Volume (SQDV), is thus determined by the following equation: $$SQDV = C * I * A_{TOTAL}$$ Where: C = coefficient of runoff (see Appendix 1) rainfall intensity per OC DAMP (see Appendix 1) A_{TOTAL} = total area to be treated The calculations are provided in the table below. | SQDV ¹ SUMMARY – WATER QUALITY / DETENTION BASIN | | | | | | |---|-----------------------|----------------------------|--------------------------|---------------------------------|------------| | BMP Location | Runoff
Coefficient | Rainfall
Intensity (in) | Drainage
Area (acres) | Unit
Conversion ² | SQDV (ft³) | | Residential WQ
Detention Basin
+ Drywells | 0.68 | 0.85 | 59 | 3,630 | 123,153 | | Civic Center WQ
Detention Basin | 0.75 | 0.85 | 9.2 | 3,630 | 21,356 | | Total Design Capture Volume for the Proposed Project: 144,509 | | | | | | ⁽¹⁾ Calculations are based on Per Orange County Drainage Area Management Plan (DAMP), Table A-1, Exhibit 7.11 – Attachment A. The total design capture volume represents the entire treatment volume for the proposed project that must be either (in sequential order): infiltrated, harvested and reused and/or biotreated and released. This volume is equivalent to the 2-year volume increase for the proposed development condition (approximately 3.3 ac-ft). ⁽²⁾ Converts inches per hour to feet per second ⁽³⁾ Estimated disturbed area of Passive Park. ~1.5 acres will retain native vegetation as under existing conditions. ⁽²⁾ Converts acre-inches to cubic feet | SQDV ¹ SUMMARY – UNDERGROUND STORAGE & INFILTRATION | | | | | |--|-----------------------|----------------------------|--------------------------|------------| | BMP Name / Location | Runoff
Coefficient | Rainfall
Intensity (in) | Drainage
Area (acres) | SQDV (ft³) | | Underground Storage & Infiltration @ Lot 15 | 0.68 | 0.85 | 13 | 27,135 | | Underground Storage & Infiltration @ Lot 16 | 0.68 | 0.85 | 14.6 | 30,475 | | Underground Storage & Infiltration @ Civic Center | 0.75 | 0.85 | 5.2 | 12,208 | ⁽¹⁾ Calculations are based on Per Orange County Drainage Area Management Plan (DAMP), Table A-1, Exhibit 7.11 – Attachment A. The underground storage and infiltration volumes identified in the table above identify infiltration objectives consistent with the 4th term Storm Water Permit. Site specific soil testing and infiltration criteria set forth in the forthcoming Model WQMP will determine the actual amount of infiltration allowable for each area. In the event the allowable infiltration is less than the design intent stated above, the remaining volume will be either reused on site for irrigation purposes or bio-treated within the proposed water quality basins and slowly discharged to Serrano Creek. For the Civic Center development area, approximately 12,208 cubic feet of the design capture volume for the drainage area must be incorporated and treated upstream of the proposed water quality basin. | SQDV | SQDV ¹ SUMMARY – PASSIVE PARK BIOSWALES & RAIN GARDEN | | | | | |--|--|------|-------|-------|-------| | BMP Location Runoff Rainfall Drainage Unit Coefficient Intensity (in) Area (acres) Conversion ² SQDV (ft ³) | | | | | | | Passive Park | 0.23 | 0.85 | 2 (3) | 3,630 | 1,398 | ⁽¹⁾ Calculations are based on Per Orange County Drainage Area Management Plan (DAMP), Table A-1, Exhibit 7.11 The implementation of the bioswales with rain gardens for the passive park area will serve to self-mitigate the low flow runoff from the park. # TREATMENT BMP SUMMARY The table on the following page summarizes the preliminary design of the treatment control BMPs. Additional details and maintenance information is provided in Section 6.0. Further details on BMP design will be documented in the Final WQMP upon final design of the project. ⁽²⁾ Converts acre-inches to cubic feet ⁽²⁾ Converts acre-inches to cubic feet ⁽³⁾ Estimated disturbed area of Passive Park. ~1.5 acres will retain native vegetation as under existing conditions. | SUMMARY OF TREATMENT BMP SIZING | | | | |--
---|--|--| | BMP NAME | DIMENSIONS | TREATMENT DESIGN
CAPACITY | | | and the same of th | PRE-TREATMENT BMPS | | | | CDS Unit #1 | Model CDS3020
72" Manhole | 2.0 cfs | | | CDS Unit #2 | Model CDS3020
72" Manhole | 2.0 cfs | | | | INFILTRATION BMPS | | | | Underground Storage/
Infiltration @ Lot 15 | ~185 ft x 70 ft
14 Rows, 25 Chambers Each | ~27,135 ft³ | | | Underground Storage/
Infiltration @ Lot 16 | ~100 ft x 150 ft
14 Rows, 20 Chambers Each | ~30,475 ft³ | | | Civic Center Underground
Storage/Infiltration | ~93 ft x 70 ft
14 Rows, 11 Chambers Each | ~12,208 ft³ | | | Drywells | 5 Maxwell Plus
(estimated number) | ~41,038 fi³ | | | 是一种"特别"。
第二章 | PRIMARY TREATMENT BMPS* | | | | Residential Water Quality
Detention Basin | Bottom Footprint = 0.95 ac Top Footprint (WQ) = 1.3 ac WQ Depth = 3 ft Total Depth = 6 ft | > 2.8 acre feet
(124,146 ft³) | | | Civic Center Water Quality
Detention Basin** | Bottom Footprint = 0.07 ac
Top Footprint (WQ) = 0.17 ac
WQ Depth = 3 ft
Total Depth = 4 ft | >0.21 acre feet (9,148 ft³) (Note: Civic Center area requires upstream treatment amount of 12,208 ft³) | | | Passive Park Bioswales
& Rain Gardens | Design Pending – Will be designed in accordance with OC DAMP and CASQA standards. | ≥ 1,398 ft³ for Rain Garden
≥ 0.1 cfs for Bioswales | | ^{*} Implementation of infiltration/storage reuse BMPs upstream will reduce volume requirements for treatment control BMPs. The use of upstream infiltration/storage BMPs combined with the bio-treat water quality basins at the downstream end will provide runoff reduction benefits to control excess volume for the 2-year storm and be consistent with the design capture volume hierarchy of treatment requirements of the recently updated MS4 Storm Water Permit. In addition, the water quality basins will provide for attenuation of low flow discharges to Serrano Creek to minimize hydromodification impacts. Maintenance requirements and frequencies for the treatment control BMPs are discussed in Section 5.0 (BMP Inspection & Maintenance) of this report. ^{**} There is a small tributary area just west of this basin between the basin and existing underground tank. This area does not need treatment as it remains undisturbed in its natural condition # 5.0 BMP INSPECTION & MAINTENANCE (O&M PLAN) It has been determined that the developer, via HOA, shall assume all BMP inspection and maintenance responsibilities for the Serrano Summit project. The City of Lake Forest shall assume all BMP inspection and maintenance responsibilities for public streets, Civic Center, and the Passive Park portions of the Project. | CONTACT NAME | Pending. To be provided in the Final WQMP | | | |--------------|--|--|--| | TITLE | | | | | COMPANY | Irvine Ranch Water District | | | | ADDRESS | 15600 Sand Canyon Avenue
Irvine, Ca 92618 | | | | PHONE | 949.453.5300 | | | Should the maintenance responsibility be transferred at any time during the operational life of Serrano Summit, such as when an HOA or POA is formed for a project, a formal notice of transfer shall be submitted to the City of Lake Forest at the time responsibility of the property subject to this WQMP is transferred. The transfer of responsibility shall be incorporated into this WQMP as an amendment. # ANNUAL CERTIFICATION OF BMP MAINTENANCE The HOA shall verify BMP implementation and ongoing maintenance through inspection, self-certification, survey, or other equally effective measure. The certification shall verify that, at a minimum, the inspection and maintenance of all structural BMPs including inspection and performance of any required maintenance in the late summer / early fall, prior to the start of the rainy season. The form that will be used to record implementation, maintenance, and inspection of BMPs is included in Appendix 6. The City of Lake Forest may conduct verifications to assure that implementation and appropriate maintenance of structural and non-structural BMPs prescribed within this WQMP is taking place at the project site. The HOA shall retain operations, inspections and maintenance records of these BMPs and they will be made available to the City or County upon request. All records must be maintained for at least five (5) years after the recorded inspection date for the lifetime of the project. #### LONG-TERM FUNDING FOR BMP MAINTENANCE Long-term funding for BMP maintenance shall be funded through fees paid into the HOA. Lewis Community Developers, which will set up the HOA shall oversee that adequate funding for BMP maintenance is included within the HOA fee structure including annual maintenance fees and long-term maintenance reserve funds. #### ACCESS EASEMENT FOR CITY/COUNTY INSPECTION If a private entity retains or assumes responsibility for operation and maintenance of structural BMPs, the City shall be able access for inspection through a formal agreement. # 5.1 MAINTENANCE OF SOURCE CONTROLS The post development BMP maintenance responsibility and frequency matrices provided in this section detail the specific party to perform the inspection and maintenance of each BMP for Serrano Summit and details the maintenance and inspection activities to be performed, and the frequency with which each shall be performed. | NO | N-STRUCTURAL BMPs | RESPONSIBLE PARTY | MINIMUM MAINTENANCE
FREQUENCY | |----|--|---|--| | NI | HOMEOWNER/
TENANT EDUCATION | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Educational materials shall be provided upon tenant occupancy, and annually thereafter. Frequency: ANNUALLY | | N2 | activity
restrictions | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Lewis Community Developers shall develop CC&Rs to minimize the threat of hazardous waste or contamination into the storm drain system. Frequency: ONGOING | | N3 | COMMON AREA
LANDSCAPE
MANAGEMENT | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Maintenance shall be consistent with City requirements, plus fertilizer and/or pesticide usage shall be consistent with County Management Guidelines for Use of Fertilizers (OC DAMP Section 5.5). Frequency: MONTHLY | | N4 | BMP MAINTENANCE | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Maintenance of BMPs implemented at the project site shall be performed at the frequency prescribed in this WQMP. Frequency: ONGOING | | NON-STRUCTURAL BMPs | | RESPONSIBLE PARTY | MINIMUM MAINTENANCE
FREQUENCY | |---------------------|--|---|---| | NII | COMMON AREA
LITTER CONTROL | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Litter pick-up, patrol, violations, investigation, reporting and other litter control activities shall be performed on a daily basis and in conjunction with maintenance activities. Frequency: WEEKLY | | N12 | EMPLOYEE TRAINING | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | The HOA shall educate all new employees/ managers on storm water pollution prevention, particularly good housekeeping practices, prior to the start of the rainy season (October 1). Refresher courses shall be conducted on an as needed basis. Frequency: ANNUALLY | | N14 | CATCH BASIN
INSPECTION | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Catch basin inlets shall be inspected and, if necessary, cleaned prior to the storm season, no later than October 1st each year. Frequency: ANNUALLY | | N15 | STREET SWEEPING
PRIVATE STREETS
AND PARKING LOTS | Private Areas:
HOA Enforced
Civic Center & Passive Park:
City of Lake Forest | Private streets and parking lots must be swept at least quarterly (every 3 months), including prior to the start of the rainy season (October 1st). Frequency: QUARTERLY | | STRUCTURAL BMPs | RESPONSIBLE PARTY | MINIMUM MAINTENANCE FREQUENCY | |---|--|---| | STORM DRAIN
STENCILING AND
SIGNAGE | Private Areas:
HOA Enforced
Civic Center & Passive
Park:
City of Lake Forest | Storm drain stencils shall be inspected for legibility, at minimum, once prior to the storm season, no later than October 1st each year. Those determined to be illegible will be re-stenciled as soon as possible. Frequency: ANNUALLY | | PROPER TRASH STORAGE
DESIGN | Private Areas:
HOA Enforced
Civic Center & Passive
Park:
City of Lake Forest | Sweep
trash areas at least once per week and before October 1st each year. Maintain area clean of trash and debris at all times. Frequency: WEEKLY | | EFFICIENT IRRIGATION
SYSTEMS AND
LANDSCAPE DESIGN | Private Areas:
HOA Enforced
Civic Center & Passive
Park:
City of Lake Forest | In conjunction with routine maintenance activities, verify that landscape design continues to function properly by adjusting properly to eliminate overspray to hardscape areas, and to verify that irrigation timing and cycle lengths are adjusted in accordance with water demands, given time of year, weather, and day or night time temperatures. Frequency: MONTHLY | | STRUCTURAL BMPs | RESPONSIBLE PARTY | MINIMUM MAINTENANCE FREQUENCY | |--------------------------------|--|---| | PROTECT SLOPES AND
CHANNELS | Private Areas:
HOA Enforced
Civic Center & Passive
Park:
City of Lake Forest | To be maintained in conjunction with routine maintenance activities. Slopes included within the daylight line of the grading plan and site plan will be landscaped with native drought resistant plants. Temporary irrigation will be provided until established. Biennial inspection & evaluation will be provided and any remediation performed by the HOA. Frequency: MONTHLY | | HILLSIDE LANDSCAPING | Private Areas:
HOA Enforced
Civic Center & Passive
Park:
City of Lake Forest | To be performed in conjunction with maintenance activities. Maintain vegetative cover and/or mulch to eliminate exposed soils. Any eroded surfaces to be repaired immediately. Inspections to be performed twice each year (spring and fall) and after major storm events to check for signs of erosion, gullies, and sloughing. Frequency: MONTHLY | Any waste generated from maintenance activities will be disposed of properly. Wash water and other waste from maintenance activities is not to be discharged or disposed of into the storm drain system. Clippings from landscape maintenance (i.e. prunings) will be collected and disposed of properly off-site, and will not be washed into the streets, local area drains/conveyances, or catch basin inlets. # 5.2 MAINTENANCE OF TREATMENT CONTROLS The post development BMP maintenance responsibility and frequency matrix provided in this section detail the specific party to perform the inspection and maintenance of each BMP for Serrano Summit and details the maintenance and inspection activities to be performed, and the frequency with which each shall be performed. | TREATMENT BMPs | RESPONSIBLE PARTY | MINIMUM INSPECTION / MAINTENANCE FREQUENCY | |--|--|---| | VEGETATED BIOSWALES
(Located in Lot 17) | City of Lake Forest
(Located in Lot 17)
(PA 17) | Vegetated swale should be inspected post-construction after seeding and after first major storm event for damages. Afterwards, inspection/maintenance should occur semi-annually, at the beginning and end of rainy season, for erosion or visible damage or debris. Inspection and maintenance of clogging and sand/soil bed should occur on an annual basis. Frequency: 2x PER YEAR | | PROPRIETARY CONTROL
MEASURES: CDS UNITS
(To be Located within
private property) | HOA Enforced
(Located in Lot 10 and
Lot 18)
(PA 10 & PA 18) | During the rainy season (October 1 – April 29), the CDS units should be inspected twice per rainy season, and cleaned out at least once per year at a minimum, prior to the start of the rainy season. It is recommended that the units be cleaned out again at the end of the rainy season to maintain function during summer months. Manufacturer's specifications may recommend additional maintenance. Frequency: MANUFACTURER'S RECOMMENDATIONS | | TREATMENT BMPs | RESPONSIBLE PARTY | MINIMUM INSPECTION / MAINTENANCE FREQUENCY | |--|---|--| | WATER QUALITY /
DETENTION BASIN | Residential Basin:
HOA Enforced
Civic Center Basin:
City of Lake Forest
(Located in Lot H)
(PA 13) | Maintained in conjunction with regular landscaping activities, including removal of trash/debris/sediment, moving, weed control, and watering during drought conditions. Damaged or dead plant areas shall be repaired upon detection. Frequency: 2x PER YEAR | | BIORETENTION/
RAIN GARDENS | City of Lake Forest
(Located in Lot 17)
(PA 17) | Routine maintenance of vegetation and irrigation should be conducted as part of the overall landscaping/irrigation schedule. Inspections should occur semi-annually or after major storm events to check for the following and remove accordingly: standing water, sediment, and trash & debris. In addition, inspections should look for potential clogging and clean planters or, if necessary, replace the entire filter bed. Frequency: 2x PER YEAR | | UNDERGROUND
STORAGE &
INFILTRATION | Residential Areas:
HOA Enforced
Civic Center:
City of Lake Forest
(Located in Lot 13)
(PA 13) | Units shall be inspected quarterly and after major storm events, and cleaned at a minimum of once per year, prior to the start of the rainy season (October 1"). Cleaning and maintenance will be performed per manufacturer's specifications, and will typically include removal of any trash and debris and excess sediment within the pipes. Frequency: MANUFACTURER'S RECOMMENDATIONS | | TREATMENT BMPs | RESPONSIBLE PARTY | MINIMUM INSPECTION /
MAINTENANCE
FREQUENCY | |----------------|------------------------------------|---| | DRYWELLS | Residential Areas:
HOA Enforced | Typical maintenance includes inspections for accumulation and cleaning/pollutant removal as necessary from the settling chambers. Quarterly inspections will help maintain optimal performance and to determine typical accumulation levels during both dry-weather and wet-weather flows. Cleanout of sediment and debris is performed as needed, based on accumulation in well. Manufacture's specifications may require additional maintenance. Frequency: ANNUALLY | # **VEGETATED BIOSWALES** Proper maintenance for the operation of swales should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed from the channel and disposed in a local composting facility. Accumulated sediment should also be removed manually to avoid concentrated flows in the swale. The application of fertilizers and pesticides should be minimal. Another aspect of a good maintenance plan is repairing damaged areas within a channel. For example, if the channel develops ruts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be thick; if it is not, reseed as necessary. Any standing water removed during the maintenance operation must be disposed to a sanitary sewer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed in accordance with local or State requirements. Maintenance of grassed swales mostly involves maintenance of the grass or wetland plant cover. # **CDS UNITS** The CDS unit should be cleaned out on average 2-4 times per year, depending on site conditions. Frequent inspections should be performed to determine the proper maintenance frequency for the unit, generally when the sump is 75% full. Generally, the unit should be inspected after every runoff event during the first 30 days of operation, and every 30 days during the rainy season to ensure functionality and determine proper maintenance frequency. Typical maintenance includes removal of trash and debris, removal of floatables and settleable solids, and replacement of oil sorbents if used. These units shall be located on private property. # WATER QUALITY / DETENTION BASINS Operation and maintenance activities for the water quality detention basins would include site inspections, temporary irrigation system inspection and adjustment,
minor vegetation removal and thinning, snag removal, and integrated pest/plan management. The treatment basins may periodically require major maintenance and possibly repairs to ensure that the basins operate at their maximum efficiency and treatment capacity. Major activities would include structural modifications and repairs, major vegetation removal and planting, and major sediment removal. The water quality basins should be inspected at a minimum of twice per year, prior to the start of the storm season (October 1st) and at the end of the storm season. Basins should be inspected for standing water (in excess of 48 hours after a storm event), excess sediment, trash, and debris accumulation, possible vector harborage, and for the condition of safety features (such as fences and signs). Trash and debris should be removed in the basin and around the outlet during the inspections. In the water quality detention basins, weeding will be performed on a monthly basis during the first six months of the project, and quarterly during years 2 and 3 as directed by the professional biologist/restoration specialist employed for the inspections. Excess sediment shall be removed and disposed of properly when the debris component of the basin exceeds 10% of the basin volume. It is recommended that the professional biologist evaluate the water quality basin for plant survival, species coverage and species composition on an annual basis. ### **RAIN GARDENS** Site inspections shall occur on an annual basis by qualified personnel to observe the integrity of the facility over time. Trash and debris removal shall occur on an as needed basis and after all rain events. At least once per year in the spring, the rain garden should be inspected for standing dead plant debris, and any observed plant debris shall be removed with replanting occurring with the approved plant palette options when necessary. The rain gardens shall be inspected for sediment trapped in the garden, at least once in late summer or early fall, prior to the start of the rainy season (October 1) and cleaned out as necessary. Shrubs shall be pruned as necessary to keep a neat appearance. In the first year, rain gardens require vigilant weeding. The need for weeding will decrease as plants become established. Therefore, monthly weeding shall be conducted during the first year of rain garden establishment. After the first year, weeding shall be conducted on an as needed basis but no less than 4 times per year. # **UNDERGROUND STORAGE & INFILTRATION** The underground infiltration units shall be inspected through the risers quarterly and after major storm events, and cleaned at a minimum of once per year, prior to the start of the rainy season (October 1st). Cleaning and maintenance will be performed per manufacturer's specifications, and will typically include removal of any trash and debris and excess sediment within the pipes. Sediment shall be removed when deposits approach within 6 inches of the invert heights of the connecting pipes between the rows or inlet structures. # **DRYWELLS** The units shall be cleaned when sediment accumulations is at or above the "cleanout line" marked inside of the units, and at a minimum of once per year, prior to the start of the storm season. Care should be taken to prevent spills during pollutant removal and cleaning. Oil and other hydrocarbons shall be cleaned out routinely as needed. # 6.0 PLOT PLAN AND BMP DETAILS The exhibits provided in this section are to illustrate the post construction BMPs prescribed within this P-WQMP. Drainage flow information of the proposed project, such as general surface flow lines, concrete or other surface drainage conveyances, and storm drain facilities are also depicted. All structural source control and treatment control BMPs are shown as well. # **PLOT PLANS** - Vicinity Map - Site Plan Exhibit - Water Quality Management Plan Exhibit #### **BMP DETAILS** - Extended Detention Basins (TC-22) - CDS Units - Underground Storage & Infiltration - Drywells - Vegetated Swales (TC-30) - Bioretention/Rain Gardens (TC-32) VICINITY MAP # EXISTING EASEMENTS - A LICENSE OF RIGHT-OF-WAY AFFECTING SAID LAND FOR THE PURPOSE OF MAINTAINING A MOTOR-WAY AND FIRE-BREAK OVER AND ACROSS A STRIP OF LAND 50 FEET IN WIDTH EXTENDING ACROSS A PORTION OF SAID LAND AS PROVIDED BY AGREEMENT ENTERED INTO ON JULY 30. 1934. BY AND BETWEEN THE WHITING COMPANY. AS LICENSOR. AND THE STATE OF CALIFORNIA, AS LICENSEE, RECORDED SEPTEMBER 29, 1934 IN BOOK 705, PAGE 237 OF OFFICIAL RECORDS. REFERENCE IS HEREBY MADE TO SAID DOCUMENT FOR FULL PARTICULARS. NOTE: NOT PLOTTABLE - PERMANENT NON-EXCLUSIVE EASEMENTS OVER ALL ROADS NOW IN EXISTENCE ON SAID LAND AND OVER ALL EXISTING EASEMENTS FOR UTILITY PURPOSES ON SUCH PROPERTY, FOR THE PURPOSE OF UTILITIES AND OF INGRESS AND EGRESS TO AND FROM REAL PROPERTY OWNED BY GRANTOR IN THE PORTION OF SAID RANCHO CANADA DE LOS ALISOS NOT NOW INCLUDED IN THE ORANGE COUNTY MUNICIPAL WATER DISTRICT, PROVIDED, HOWEVER, THAT SUCH ROADS AND/OR UTILITY EASEMENTS MAY BE RELOCATED OR ABANDONED AT ANY TIME BY GRANTEE, ITS SUCCESSORS AND ASSIGNS, IF A SUBSTANTIALLY EQUIVALENT ROAD OR EASEMENT, AS THE CASE MAY BE, FOR SUCH PURPOSES SHALL BE SUBSTITUTED THEREFORE, ANY SUCH SUBSTITUTE ROAD OR EASEMENT SHALL SERVE THE PURPOSES SERVED BY THE ABANDONED EASEMENT IN A REASONABLE AND SATISFACTORY MANNER. IN THE EXERCISE OF THE REGULATIONS OF GRANTEE WITH RESPECT TO THE LOCKING OF GATES AND KEEPING THE PUBLIC FROM ACQUIRING - EASEMENTS, AS RESERVED BY THE EL TORO COMPANY, A PARTNERSHIP, THEIR SUCCESSORS AND ASSIGNS IN DEEDS RECORDED DECEMBER 31, 1958 IN BOOK 4533, PAGES 588, 590 AND 593 OF OFFICIAL RECORDS AND IN DEED RECORDED JANUARY 20, 1961 IN BOOK 5598, PAGE 393 OF OFFICIAL RECORDS. REFERENCE IS HEREBY MADE TO SAID DOCUMENT FOR FULL PARTICULARS. NOTE: NOT PLOTTABLE — BLANKET IN NATURE OVER SUBJECT PROPERTY. - AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: LOS ALISOS WATER DISTRICT AND EL TORO WATER DISTRICT PURPOSE: PIPE LINES MARCH 22. 1963 IN BOOK 6478. PAGE 511 OF OFFICIAL RECORDS A PORTION OF SAID LAND AS DESCRIBED THEREIN - 4 > AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SANTA ANA MOUNTAINS COUNTY WATER DISTRICT, A COUNTY WATER DISTRICT PURPOSE: PIPE LINES JANUARY 8, 1965 IN BOOK 7374, PAGE 655 OF OFFICIAL RECORDS RECORDED: - A PORTION OF SAID LAND AS DESCRIBED THEREIN δ AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SOUTHERN CALIFORNIA EDISON COMPANY - POLE LINES AND CONDUITS PURPOSE: OCTOBER 9, 1970 IN BOOK 9427, PAGE 326 OF OFFICIAL RECORDS RECORDED: AFFECTS: A PORTION OF PARCEL 2 AS SHOWN ON SAID MAP - 6 > AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SOUTHERN CALIFORNIA EDISON EITHER OR BOTH POLE LINES, CONDUITS AND PURPOSES INCIDENTAL THERETO IN BOOK 10071, PAGE 684 OF OFFICIAL RECORDS A PORTION OF PARCEL 2 AS SHOWN ON SAID MAP - AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SOUTHERN CALIFORNIA EDISON COMPANY OVERHEAD AND UNDERGROUND ELECTRICAL SUPPLY AND COMMUNICATION - MAY 7, 1975 IN BOOK 11395, PAGE 1751 OF OFFICIAL RECORDS A PORTION OF PARCEL 2 AS SHOWN ON SAID MAP - 8 angle AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: MUNICIPAL WATER DISTRICT OF ORANGE COUNTY WATER TRANSMISSION JANUARY 11, 1983 AS INSTRUMENT NO. 83-013710 OF OFFICIAL RECORDS AFFECTS: A PORTION OF PARCEL 2 AS SHOWN ON SAID MAP - 10 EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS DELINEATED OR AS OFFERED FOR DEDICATION, ON THE RECORDED MAP SHOWN BELOW: MAP OF: PARCEL MAP 89-218 - GRANTED TO: THE COUNTY OF ORANGE PURPOSE: AIRCRAFT OPERATIONS, SOUND, AIR SPACE AND AVIGATION, SUBJECT TO THE SAME CONDITIONS AND LIMITATIONS AS SHOWN ON THAT CERTAIN EASEMENT RECORDED JULY 2, 1979 IN BOOK 13213, PAGE 1111 OF OFFICIAL RECORDS - NOTE: BLANKET IN NATURE OVER SUBJECT PROPERTY-FROM 1500 FEFT ABOVE MEAN SEA LEVEL TO INDEFINITE HEIGHT ABOVE 1500 FEET MEAN SEA LEVEL. \langle 11 \rangle EASEMENT(S) FOR THE PURPOSE(S) SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS - DELINEATED OR AS OFFERED FOR DEDICATION, ON THE RECORDED MAP SHOWN BELOW: MAP OF: PARCEL MAP 89-218 GRANTED TO: THE COUNTY OF ORANGE PURPOSE: SCENIC PRESERVATION PURPOSES AFFECTS: SAID LAND - (12) AN IRREVOCABLE OFFER TO DEDICATE A PORTION OF SAID LAND FOR THE PURPOSES STATED HEREIN, AS OFFERED ON THE MAP SHOWN BELOW: IN FAVOR OF: LOS ALISOS WATER DISTRICT RIDING AND HIKING PURPOSES - A PORTION OF PARCEL 2 SAID OFFER WAS ACCEPTED FOR PUBLIC USE BY A RESOLUTION, EXECUTED BY BOARD OF SUPERVISORS AND RECORDED APRIL 6, 1994 AS INSTRUMENT NO. 94-0238398 AND APRIL 8, 1994 AS INSTRUMENT NO. 94-0248194, BOTH OF OFFICIAL RECORDS. - 13 AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SOUTHERN CALIFORNIA EDISON COMPANY, A CORPORATION UNDERGROUND ELECTRICAL SUPPLY SYSTEMS AND COMMUNICATION SYSTEMS JUNE 4, 1991 AS INSTRUMENT NO. 91-277708 OF OFFICIAL RECORDS RECORDED: THAT PORTION OF SAID LAND AS MORE PARTICULARLY DESCRIBED THEREIN AMONG OTHER THINGS, SAID DOCUMENT PROVIDES: THE GRANTOR AGREES FOR ITSELF, ITS SUCCESSORS AND ASSIGNS, NOT TO ERECT, PLACE OR MAINTAIN, NOR TO PERMIT THE ERECTION, PLACEMENT OR MAINTENANCE OF ANY BUILDING, PLANTER BOXES, EARTH FILL OR OTHER STRUCTURES EXCEPT WALLS AND FENCES ON THE ABOVE DESCRIBED REAL PROPERTY. NOTE: AFFECTS BUT IS NOT PLOTTABLE. - \langle 14angle AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: SOUTHERN CALIFORNIA GAS COMPANY, A CORPORATION PIPELINES, WITH METERING, MEASURING, REGULATING AND OTHER EQUIPMENT, FOR THE
TRANSPORTATION OF GAS, PETROLEUM PRODUCTS AND OTHER SUBSTANCES, WITH THE RIGHT OF INGRESS AND EGRESS TO AND FROM THE JULY 10, 1991 AS INSTRUMENT NO. 91-355245 OF OFFICIAL RECORDS - THAT PORTION OF SAID LAND AS MORE PARTICULARLY DESCRIBED THEREIN AMONG OTHER THINGS, SAID DOCUMENT PROVIDES: GRANTOR SHALL NOT CONSTRUCT OR MAINTAIN ON THE PREMISES, OVER WHICH THIS RIGHT OF WAY IS GRANTED. ANY BUILDINGS OR OTHER STRUCTURES, PLANT TREES, INUNDATE, OR CHANGE THE GRADE OF THE PREMISES. - 15 THE MATTERS CONTAINED IN THAT CERTAIN "AMENDED MAJOR THOROUGHFARE AND BRIDGE FEE PROGRAM FOR FOOTHILL CIRCULATION PHASING PLAN" AS DISCLOSED BY RESOLUTION NO. 92-614 OF THE BOARD OF SUPERVISORS OF ORANGE COUNTY, A CERTIFIED COPY OF WHICH WAS RECORDED JUNE 2, 1992 AS INSTRUMENT NO. 92-369892 OF OFFICIAL REFERENCE IS HEREBY MADE TO SAID DOCUMENT FOR FULL PARTICULARS. - 16 MATTERS CONTAINED IN THAT CERTAIN DOCUMENT ENTITLED "AMENDED AND RESTATED ALLEN-McCOLLOCK PIPELINE SUBLEASE" EXECUTED BY AND BETWEEN MUNICIPAL WATER DISTRICT OF ORANGE COUNTY AND LOS ALISOS WATER DISTRICT. RECORDED AUGUST 27. 1992 AS INSTRUMENT NO. 92-569777 OF OFFICIAL RECORDS. REFERENCE IS HEREBY MADE TO SAID DOCUMENT FOR FULL PARTICULARS. - 17 AN EASEMENT FOR THE PURPOSE SHOWN BELOW AND RIGHTS INCIDENTAL THERETO AS SET FORTH IN A DOCUMENT. GRANTED TO: MUNICIPAL WATER DISTRICT OF ORANGE COUNTY, A MUNICIPAL WATER - RECORDED: JANUARY 23, 1996 AS INSTRUMENT NO. 1996033543 OF OFFICIAL RECORDS THAT PORTION OF SAID LAND AS MORE PARTICULARLY DESCRIBED THEREIN WATER RIGHTS, CLAIMS OR TITLE TO WATER, WHETHER OR NOT DISCLOSED BY THE PUBLIC RECORDS. # **NOTES** - 1. PROPERTY AREA: GROSS ACREAGE: 98.9 Acres - 2. ZONING: - EXISTING ZONING: MEDIUM DENSITY RESIDENTIAL R2-PD/PUBLIC FACILITIES/ PUBLIC FACILITIES OVERLAY - 3. LAND USE DESIGNATION: MEDIUM DENSITY RESIDENTIAL WITH PUBLIC FACILITIES OVERLAY (82 ACRES); AND PUBLIC FACILITY (FOR THE REMAINDER ACREAGE — APPROXIMATELY 17 ACRES). THIS CORRESPONDS TO THE GENERAL PLAN DESIGNATIONS OF THE SITE RESULTING FROM GENERAL PLAN AMENDMENT 2008-02(c). (PLANNING) - TO BE SHOWN ON B MAPS. - 5. PROJECT SITE IS WITHIN THE SADDLEBACK VALLEY UNIFIED SCHOOL DISTRICT - 6. SANITARY SEWER SERVICES PROVIDED BY: IRVINE RANCH WATER DISTRICT - 7. DOMESTIC WATER SERVICES PROVIDED BY: IRVINE RANCH WATER DISTRICT 8. RECLAIMED WATER SERVICES PROVIDED BY: IRVINE RANCH WATER DISTRICT - 9. ALL PROPOSED UTILITIES ARE TO BE UNDERGROUND: SOUTHERN CALIFORNIA GAS COMPANY - ELECTRIC: SOUTHERN CALIFORNIA EDISON TELEPHONE COX COMMUNICATION COX COMMUNICATION - 10. TRASH WILL BE COLLECTED BY WASTE MANAGEMENT OF - 11. ALL SLOPES SHALL BE CONSTRUCTED AT A MAXIMUM SLOPE RATIO OF 2:1 UNLESS OTHERWISE NOTED. - 12. MULTIPLE FINAL MAPS MAY BE RECORDED FROM THIS TENTATIVE TRACT MAP PER SECTION 66454.1 OF THE STATE OF CALIFORNIA GOVERNMENT CODE (SUBDIVISION MAP ACT) AS AMENDED JANUARY, 2001 - 13. FUTURE DEVELOPMENT OF PROJECT AREA SHALL BE SUBJECT TO THE REQUIREMENTS OF SERRANO SUMMIT AREA PLAN. - 14. DRAINAGE SYSTEMS WILL BE DEVELOPED IN ACCORDANCE WITH THE CITY OF LAKE FOREST AND FLOOD CONTROL DISTRICT STANDARDS. 15. GRADING FOR TENTATIVE TRACT MAP NO. 17331 MAY BE ACCOMPLISHED IN MULTIPLE PHASES. - 16. ALL PROPOSED STORM DRAINS SHOWN ARE PRELIMINARY, STORM DRAIN PLANS WILL BE PREPARED PRIOR TO RECORDATION OF THE FINAL MAP. 17. BACKBONE AND OFF-SITE FACILITIES FOR TENTATIVE TRACT MAP NO. 17331 MAY BE PHASED - AND COORDINATED WITH THE INITIAL GRADING AND DEVELOPMENT. 18. PUBLIC EASEMENTS (IF NECESSARY) FOR SIDEWALK PURPOSES WILL BE REFLECTED - ON THE FINAL MAPS. 19. ESTIMATED EARTHWORK - CUT: 860,000 ±CY FILL: 860,000 ±CY - 20. LANDSCAPING WITHIN MEDIAN AREAS, STREET ISLANDS AND PARKWAYS WILL BE MAINTAINED BY THE CITY OF LAKE FOREST. - 21. THIS MAP IS AN APPLICATION FOR A DEVELOPMENT PERMIT PURSUANT TO SECTION 65493 OF THE CALIFORNIA GOVERNMENT CODE, AND ITEM SECTION 5.3 PER THE DEVELOPMENT AGREEMENT, WHICH STATES, ""'A' MAP' SHALL MEAN THE FIRST CONVEYANCE SUBDIVISION MAP FOR WHICH FINAL APPROVAL IS ISSUED BY THE CITY COUNCIL FOLLOWING THE EFFECTIVE DATE OR THE FIRST TENTATIVE MAP FOR THE PROJECT WHICH IS APPROVED BY THE CITY FOLLOWING THE EFFECTIVE DATE OF THIS AGREEMENT, WHICHEVER IS APPROVED FIRST." - 22. ALL LOT AND PAD GRADIENTS TO BE 2% MINIMUM, UNLESS OTHERWISE NOTED. MASS GRADED PADS CAN BE GRADED AT 1% MINIMUM. (DEVIATION TO GRADING CODE AND MANUAL). - 23. PROPOSED UTILITY LOCATIONS AND EASEMENTS ARE APPROXIMATE. ACTUAL LOCATIONS AND EASEMENT WIDTHS WILL BE SHOWN ON THE FINAL MAPS. - 24. SEE FUEL MODIFICATION PLAN FOR FUEL MODIFICATION LIMITS AND DETAILS. - 25. THERE IS A DEVELOPMENT AGREEMENT AND AREA PLAN FOR THIS PROPERTY. 26. LOTS H AND 13 WILL BE OFFERED AS AN "IRREVOCABLE OFFER OF DEDICATION" TO THE CITY - OF LAKE FOREST ON THE FINAL TRACT MAP OR BY SEPARATE INSTRUMENT. 27. MSE WALL IS A MECHANICALLY STABILIZED EARTH WALL. - 28. REGARDING THE CUL-DE-SAC ON INDIAN OCEAN, THE OWNER/DEVELOPER HAS THE RIGHT TO CONVERT INTO A CONTINUOUS STREET BY EXTENDING THE STREET OR MAKING A FULL TURN - 29. ALL PROPOSED STORM DRAIN FACILITIES WILL BE MAINTAINED BY THE H.O.A. 30. CONCRETE MASONRY RETAINING WALL ADJACENT TO THE STREETS SHALL BE DECORATIVE UNITS. - 31. ANY GRADING INVOLVING ANOTHER PARCEL MUST HAVE THE PERMISSION OF ALL APPLICABLE PROPERTY OWNERS AND APPROPRIATE EASEMENT DOCUMENTS. 32. ALL SEWER AND WATER FACILITIES TO BE MAINTAINED BY THE IRVINE RANCH WATER DISTRICT. - 33. UNLESS OTHERWISE NOTED ALL CURB ONLY WILL BE 6" HIGH; CURB AND GUTTER WILL BE 6" HIGH AND HAVE A 'W'-VALUE OF 18" PER THE CITY OF LAKE FOREST STANDARD CRITERIA. ROLLED CURB WILL BE 4" HIGH AND WILL OCCUR AT THE ROUND-A-BOUTS - 34. PUBLIC UTILITY EASEMENTS ARE LOCATED ADJACENT TO PRIVATE STREETS A, B & C, 3' OUTSIDE OF THE PROPERTY LINES # TENTATIVE TRACT NO. 17331 # PROPOSED LAND USE SUMMARY | LOTS | LAND USE | SQ. FT. | PAD
ACREAGE | LANDSCAPE
LOT ACREAGE | TOTAL
ACREAGE | MAINTENANCE
RESPONSIBILITY | |---|---|--|--|---|---|--| | 1 | RESIDENTIAL | 268,394 | 6.2 | 0.5 (G) | 6.7 | H.O.A. | | 2 | RESIDENTIAL | 45,556 | 1.0 | - 0.5 (0) | 1.0 | H.O.A. | | 3 | RESIDENTIAL | 87,314 | 2.0 | _ | 2.0 | H.O.A. | | 4 | RESIDENTIAL | 61,530 | 1.4 | _ | 1.4 | H.O.A. | | <u> </u> | RESIDENTIAL | 312,877 | 7.2 | | 7.2 | H.O.A. | | 6 | RESIDENTIAL | 237,575 | 5.5 | 1.1 (1) | 6.6 | H.O.A. | | 7 | RESIDENTIAL | 73,933 | 1.7 | 1.1 (1) | 1.7 | H.O.A. | | | RESIDENTIAL | 64,567 | 1.5 | <u>_</u> | 1.5 | H.O.A. | | 9 | RESIDENTIAL | 66,555 | 1.5 | _ | 1.5 | H.O.A. | | 10 | RESIDENTIAL | 92,846 | 2.1 | | 2.1 | H.O.A. | | 11 | RESIDENTIAL | 153,499 | 3.5 | _ | 3.5 | H.O.A. | | 12 | RESIDENTIAL | 357,563 | 8.2 | 0.3 (F) | 8.5 | H.O.A. | | 13 | | <u>*</u> | 9.3 | · · · · · · · · · · · · · · · · · · · | 11.9 | | | 13 | RESIDENTIAL TOTAL: | 405,555 | | 2.6 (H) | | Н.О.А. | | ~ \ | | 2,227,764 | 51.1 | 4.5 | 55.6 | | | .01VIN | MUNITY SERVICES:
 CIVIC_CENTER_(OVERLAY) | 405,555 | 0.7 | 26 (11) | _ | CITY OF LAVE FOREST | | 13 | | 405,555
405,555 | 9.3
9.3 | 2.6 (H)
2.6 | _ | CITY OF LAKE FOREST | | | TOTAL: | 403,333 | 9.3 | 2.6 | _ | | | | S/RECREATION: | 70.450 | 1.0 | 0.7 (41) | 1.0 | 1,04 | | 14 | PRIVATE RECREATION CENTER | 70,452 | 1.6 | 0.3 (N) | 1.9 | H.O.A. | | 15 | PUBLIC PARK | 20,711 | 0.5 | _ | 0.5 | H.O.A. | | 16 | PUBLIC PARK | 22,173 | 0.5 | _ | 0.5 | H.O.A. | | 17 | PUBLIC PARK | 165,168 | 3.8 | | 3.8 | CITY OF LAKE FOREST | | -VICTI | TOTAL: | 278,504 | 6.4 | 0.3 | 6.7 | | | | NG FACILITIES: | | | | | | | 18 | EXISTING WATER TANKS | 534,959 | 12.2 | 0.8(K), 2.7(L), 0.3(M) | 16.0 | I.R.W.D./H.O.A. | | 19 | EXISTING I.R.W.D. FACILITY | 352,930 | 8.1 | _ | 8.1 | I.R.W.D./H.O.A. | | 0 | OPEN SPACE | 171,033 | 3.9 | _ | 3.9 | I.R.W.D./H.O.A. | | | TOTAL: | 1,058,922 | 24.2 | 3.8 | 28.0 | | | | Į. | .,,. | | | | • | | PRIVA | TE STREETS: | ., | 2 1,2 | | | | | PRIVA
A | Į. | 22,789 | 0.5 | _ | 0.5 | Н.О.А. | | | TE STREETS: | | | _
_
_ | 0.5
0.5 | H.O.A.
H.O.A. | | Α | TE STREETS: PRIVATE DRIVE A | 22,789
23,373 | 0.5 | _ | | H.O.A. | | A
B | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B | 22,789 | 0.5
0.5 | | 0.5 | 1 | | A
B
C | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C | 22,789
23,373
24,415
38,020 | 0.5
0.5
0.6 | 0.2 (J) | 0.5
0.8 | H.O.A.
H.O.A.
H.O.A. | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D | 22,789
23,373
24,415
38,020
14,737 | 0.5
0.5
0.6
0.9 | -
0.2 (J)
- | 0.5
0.8
0.9 | H.O.A.
H.O.A. | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: | 22,789
23,373
24,415
38,020 | 0.5
0.5
0.6
0.9
0.3 | -
0.2 (J)
-
- | 0.5
0.8
0.9
0.3 | H.O.A.
H.O.A.
H.O.A. | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: |
22,789
23,373
24,415
38,020
14,737
123,334 | 0.5
0.5
0.6
0.9
0.3
2.8 | -
0.2 (J)
-
-
0.2 | 0.5
0.8
0.9
0.3
3.0 | H.O.A.
H.O.A.
H.O.A.
H.O.A. | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: "A" STREET | 22,789
23,373
24,415
38,020
14,737
123,334 | 0.5
0.5
0.6
0.9
0.3
2.8 | -
0.2 (J)
-
-
0.2 | 0.5
0.8
0.9
0.3
3.0 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1 | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: "A" STREET "B" STREET | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219 | 0.5
0.5
0.6
0.9
0.3
2.8 | - 0.2 (J)
0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) | | A
B
C
D | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: "A" STREET "B" STREET INDIAN OCEAN DRIVE | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8 | - 0.2 (J)
0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) | | A
B
C
D
E | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219 | 0.5
0.5
0.6
0.9
0.3
2.8 | - 0.2 (J)
0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1 | | A
B
C
D
E | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) | | A
B
C
D
E
PUBLIC | PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. | | A
B
C
D
E
C
UBLIC
AND | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666 | 0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 - 0.3 - 0.5 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. H.O.A. | | A
B
C
D
E
PUBLIC | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT LANDSCAPE LOT LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) 0.2 - 0.2 - 0.3 - 0.5 - 2.6 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST | | A
B
C
D
E
UBLIC | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT LANDSCAPE LOT LANDSCAPE LOT LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590 | 0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 - 0.3 - 0.5 - 2.6 - 1.1 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST H.O.A. | | A
B
C
D
E
UBLIC
AND
F
G
H
I | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590
7,133 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 - 0.3 - 0.5 - 2.6 - 1.1 - 0.2 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST H.O.A. H.O.A. H.O.A. H.O.A. | | A
B
C
D
E
PUBLIC
F
G
H | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT LANDSCAPE LOT LANDSCAPE LOT LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590 | 0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 - 0.3 - 0.5 - 2.6 - 1.1 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST H.O.A. | | A
B
C
D
E
PUBLIC
F
G
H
I
J | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590
7,133 | 0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) 0.2 - 0.2 - 0.3 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST H.O.A. H.O.A. H.O.A. H.O.A. | | A
B
C
D
E
UBLIC
AND
F
G
H
I | PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590
7,133
33,692 | 0.5
0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) - 0.2 - 0.2 - 0.2 - 0.3 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (2) CITY OF LAKE FOREST (2) H.O.A. H.O.A. CITY OF LAKE FOREST H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. | | A
B
C
D
E
UBLIC
F
G
H
I
J
K
L | TE STREETS: PRIVATE DRIVE A PRIVATE DRIVE B PRIVATE DRIVE C PRIVATE DRIVE D PRIVATE DRIVE E TOTAL: C STREETS: "A" STREET "B" STREET INDIAN OCEAN DRIVE TOTAL: SCAPE LOTS (SLOPES): LANDSCAPE LOT | 22,789
23,373
24,415
38,020
14,737
123,334
108,639
56,219
76,808
241,666
11,419
23,533
112,747
46,590
7,133
33,692
118,685 | 0.5
0.6
0.9
0.3
2.8
2.5
1.3
1.8
5.6 | - 0.2 (J) 0.2 - 0.2 - 0.3 | 0.5
0.8
0.9
0.3
3.0
2.5
1.3
1.8
5.6 | H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. H.O.A. CITY OF LAKE FOREST (1) CITY OF LAKE FOREST (2) H.O.A. | # TOTAL: 98.9 ACRES - MINIMUM 9.0 USEABLE NET ACRES REQUIRED FOR THE CIVIC CENTER AND MINIMUM 2.95 USEABLE NET ACRES REQUIRED FOR THE PASSIVE PARK PER D.A. - (1) H.O.A. TO MAINTAIN PARKWAYS AND MEDIANS (2) H.O.A. TO MAINTAIN PARKWAYS ON THE WEST SIDE OF THE STREET. # FLOOD ZONE: PROJECT SITE LIES WITHIN ZONE X OF THE FIRM MAP ORANGE COUNTY, CALIFORNIA AND INCORPORATED AREAS. PANELS 316 & 318 OF 550. MAP NO's. 06059C0316H AND 06059C0318H PER MAP REVISED FEBRUARY 18, 2004. ZONE X DESIGNATION IS DEFINED AS AREAS DETERMINED TO BE OUTSIDE THE 0.20% ANNUAL CHANCE FLOODPLAIN. # LEGAL DESCRIPTION. - PARCELS 1 AND 2 OF AMENDED PARCEL MAP NO. 89-218, IN THE CITY OF LAKE FOREST, COUNTY OF ORANGE, STATE OF CALIFORNIA, AS SHOWN ON MAP FILED IN BOOK 274, PAGES 27 THROUGH 29, INCLUSIVE OF PARCEL MAPS, IN THE OFFICE OF THE COUNTY RECORDER OF SAID COUNTY. - EXCEPTING THEREFROM THAT PORTION OF SAID LAND CONVEYED TO MUNICIPAL WATER DISTRICT OF ORANGE COUNTY, A MUNICIPAL DISTRICT BY DEED RECORDED JANUARY 23, 1996 AS INSTRUMENT NO. 19960033544, OF OFFICIAL # ASSESSOR PARCEL NUMBERS: TITLE REPORT 104-132-36, -65 AND -84 THE BOUNDARY AND EASEMENTS SHOWN HEREON ARE PER CHICAGO TITLE COMPANY ORDER NUMBER 810015144-X14 DATED AS OF MAY 18, 2009 # **DEVIATIONS:** - 1. STREET WIDTHS, INCLUDING OVERALL R/W TO R/W, PARKWAY WIDTHS, CURB TO CURB WIDTHS, SIDEWALK WIDTHS AND PL TO PL WIDTHS MAYBE AS SHOWN ON THIS TENTATIVE - 2. DEAD END TURNAROUNDS MAYBE AS SHOWN ON THIS TENTATIVE TRACT MAP.
- 3. WHEN PUBLIC STREET CENTERLINE GRADES ARE 1%, CURB FLOWLINE GRADES MAY DROP - TO 0.85% ON THE OUTSIDE RADIUS. - 4. PRIVATE INTERNAL STREETS MAY HAVE GUTTER FLOWLINES OF 0.50% MINIMUM. 5. CURVED LOCAL STREET RADII MAY BE AS SHOWN ON THIS TENTATIVE TRACT MAP. - 6. PRIVATE STREET "C" MAY BE EXTENDED TO A TOTAL LENGTH OF UP TO 1,250 LINEAL FEET. 7. CORNER CUT-OFFS FOR LOCAL COLLECTOR STREETS THAT INTERSECTS LOCAL COLLECTOR 98.9 Acres - OR LOCAL STREETS MAY BE CIRCULAR, EXCEPT AS SHOWN ON MAP. 8. SIDEWALKS AND PEDESTRIAN WAYS SHALL BE AS SHOWN ON THIS TENTATIVE TRACT MAP - 9. SHEET FLOW GRADING FOR THE INTERIM MASS GRADED PADS MAYBE AT 1% MINIMUM AS SHOWN ON THIS TENTATIVE TRACT MAP. . 9 LOTS 7 LOTS TOTAL LOTS: 35 LOTS TOTAL DWELLING UNITS: 608 DU # OVERVIEW SUMMARY TOTAL SITE ACREAGE: TOTAL LANDSCAPE..... TOTAL STREET ... TOTAL RESIDENTIAL.... ...13 LOTS TOTAL PARKS/RECREATION 4 LOT TOTAL CIVIC CENTER ... 1 LOT(OVERLAY) TOTAL EXISTING I.R.W.D.... 2 LOTS ATLANTIC OCEAN DRIVE COMMERCENTRE DR SITE # SLOPES: - 1. ALL SLOPES TO HAVE TERRACE AND DOWNDRAINS AS REQUIRED BY THE CITY OF LAKE FOREST BUT ARE NOT SHOWN HEREON FOR CLARITY. - 2. ALL SLOPES TO BE MAINTAINED AS FOLLOWS: - (A) TO BE MAINTAINED BY THE CITY OF LAKE FOREST - $\langle B \rangle$ TO BE MAINTAINED BY MASTER H.O.A. - $\langle c \rangle$ to be maintained by property owner (SUB-H.O.A.) - 3. SLOPE TYPES ARE DEFINED, PER CITY OF LAKE FOREST ORDINANCE NO. 84 AS FOLLOWS: TYPE 'A' THOSE PROPOSED TO BE MAINTAINED BY A PUBLIC AGENCY OR BY - A GROUP. SUCH AS A HOMEOWNERS' ASSOCIATION. AND WHICH ARE LOCATED EITHER ADJACENT TO AN ARTERIAL HIGHWAY OR WITHIN A PARK, GREENBELT, OR OTHER PUBLIC COMMON OPEN SPACE AREA - TYPE 'B' THOSE PROPOSED TO BE MAINTAINED BY A GROUP, SUCH AS A HOMEOWNERS' ASSOCIATION, AND WHICH ARE LOCATED WITHIN OR ADJACENT TO INDIVIDUAL LOTS AND WHICH ARE NOT WITHIN A PARK, GREENBELT, OR OTHER PUBLIC OR COMMON OPEN SPACE AREA. - TYPE 'C' THOSE PROPOSED TO BE MAINTAINED BY INDIVIDUALS AND WHICH ARE LOCATED WITHIN INDIVIDUAL LOTS IN SUCH A MANNER THAT THEY ARE INAPPROPRIATE FOR MAINTENANCE BY A GROUP SUCH AS A HOMEOWNERS' ASSOCIATION. (COLLECTOR) ' ŜTREET (PUBLIC INDIAN OCEAN DRIVE / E (PROPOSED) SCALE: 1"=20' | STATEMENT OF OWNERSHIP: | | |--|--| | TE, IRVINE RANCH WATER DISTRICT, DO HEREBY STATE THAT WE RE THE OWNERS OF THE PROPERTY COMPRISING THIS TENTATIVE RACT MAP AND THAT WE HAVE CONSENTED TO THE SUBMISSION OF SAID MAP. (LOS ALISOS WATER DISTRICT PREVIOUSLY OWNED HE SUBJECT PROPERTY AND SUBSEQUENTLY IRVINE RANCH WATER DISTRICT AND LOS ALISOS WATER DISTRICT HAVE MERGED). | | | DATED: | | | BY: | | | PRINTED NAME: | | | TITLE: | | NO. DATE REVISIONS PREPARED UNDER THE SUPERVISION OF: EXP. DATE <u>03/31/10</u> TENTATIVE TRACT NO. 17331 FIELD BOOK MLD/NSM CITY OF LAKE FOREST, CALIFORNIA Hydrodynamic Separation Products Overview # Vortechs® # High performance hydrodynamic separation The Vortechs system is a high-performance hydrodynamic separator that effectively removes finer sediment, oil and grease, and floating and sinking debris. Its swirl concentrator and flow controls work together to minimize turbulence and provide stable storage of captured pollutants. The design also allows for easy inspection and unobstructed maintenance access. With comprehensive lab and field testing, the system delivers proven results and site-specific solutions. Precast models can treat peak design flows up to 25 cfs; cast-in-place models handle even greater flows. A typical system is sized to provide an 80% load reduction based on laboratory-verified removal efficiencies for varying particle size distributions such as 50-micron sediment particles. Water enters the swirl chamber at a tangent, inducing a gentle swirling flow pattern and enhancing gravitational separation. Sinking pollutants stay in the swirl chamber while floating pollutants are stopped at the baffle wall. Typically Vortechs systems are sized such that 80% or more of runoff through the system will be controlled exclusively by the low flow control. This orifice effectively reduces inflow velocity and turbulence by inducing a slight backwater appropriate to the site. During larger storms, the water level rises above the low flow control and begins to flow through the high flow control. The layer of floating pollutants is elevated above the influent pipe, preventing re-entrainment. Swirling action increases in relation to the storm intensity, which helps prevent re-suspension. When the storm drain is flowing at peak capacity, the water surface in the system approaches the top of the high flow control. The Vortechs system will be sized large enough so that previously captured pollutants are retained in the system even during these infrequent events. As a storm subsides, treated runoff decants out of the Vortechs system at a controlled rate, restoring the water level to a dry-weather level equal to the invert of the inlet and outlet pipes. The low water level facilitates easier inspection and cleaning, and significantly reduces maintenance costs by reducing pump-out volume. - · Proven performance speeds approval process - · Treats peak flows without bypassing - · Flow controls reduce inflow velocity and increase residence time - · Unobstructed access simplifies maintenance - · Shallow system profile makes installation easier and less expensive - Very low headloss - Flexible design fits multiple site constraints # Patented continuous deflection separation (CDS) technology Using patented continuous deflective separation technology, the CDS system screens, separates and traps sediment, debris, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Available in precast or cast-in-place. Offline units can treat flows from 30 to 8500 L/s (1 to 300 cfs). Inline units can treat up to 170 L/s (7.5 cfs), and internally bypass larger flows in excess of 1420 L/s (50 cfs). The pollutant removal capability of the CDS system has been proven in the lab and field. ### How does it work? Stormwater enters the CDS unit's diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed. All flows up to the system's treatment design capacity enter the separation chamber. Swirl concentration and screen deflection forces floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped. Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection. During flow events exceeding the design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants will not wash out. # CDS - · Removes sediment, trash, and free oil and grease - Patented screening technology captures and retains 100% of floatables, including neutrally buoyant and all other material larger than the screen aperture - · Operation independent of flow - · Performance verified through lab and field testing - · Unobstructed maintenance access - · Customizable/flexible design and multiple configurations available - Separates and confines pollutants from outlet flow - Inline, offline, grate inlet and drop inlet configurations available - Multiple screen aperture sizes available # VortSentry® # Hydrodynamic separation with internal bypass The VortSentry is a hydrodynamic separator with a small footprint that makes it an effective treatment option for projects where space is at a premium and effective removal of floating and sinking pollutants is critical. The internal bypass ensures treatment chamber velocities remain low, which improves performance and eliminates the risk of resuspension. In addition to standalone applications, the VortSentry is an ideal pretreatment device. The system is housed inside a concrete manhole structure for easy installation (often without the use of a crane) and unobstructed maintenance access. ### How does it work? Stormwater runoff enters the unit tangentially to promote a gentle swirling motion in the treatment chamber. As stormwater circles within the chamber, settleable solids fall into the sump and are retained. Buoyant debris and oil and grease rise to the surface and are separated from the water as it flows under the baffle wall. Treated water exits the treatment chamber through a flow control orifice located behind the baffle wall. During low-flow conditions all runoff is diverted into the treatment chamber by the flow partition. At higher flow rates, a portion of the runoff spills over the flow partition and is diverted around the treatment chamber, filling the head equalization INLET APERTURE INLET PIPE INLET PIPE TREATMENT CHAMBER BAFFLE TREATMENT CHAMBER SEDIMENT STORAGE SUMP chamber. This collapses the head differential between the treatment chamber and the outlet, resulting in a relatively constant flow rate in the treatment chamber even with a substantial increase in total flow through the system. This further reduces the potential for resuspension or washout of captured pollutants. ### VortSentry - · Treatment and internal bypass in one structure - · Compact design ideal for congested sites - · Unobstructed maintenance access - · Round, lightweight construction for easy installation # VortSentry® HS #### Engineered performance and
installation simplicity The VortSentry HS system employs a helical flow pattern that enhances trapping and containment of pollutants and provides effective removal of settleable solids and floating contaminants from urban runoff. With the ability to accept a wide range of pipe sizes, the VortSentry HS can treat and convey flows from small to large sites. A unique internal bypass design means higher flows can be diverted without the use of external bypass structures. The design of the VortSentry HS minimizes adverse velocities or turbulence in the treatment chamber. This helps to prevent the washout of previously captured pollutants even during peak conditions. The VortSentry HS is also available in a grate inlet configuration, which is ideal for retrofits. Flows from low intensity storms, which are most frequent, are directed into the treatment chamber through the primary inlet. The tangentially oriented downward pipe induces a swirling motion in the treatment chamber that increases capture and containment abilities. Moderate storm flows are directed into the treatment chamber through the secondary inlet, which allows for capture of floating trash and debris. The secondary inlet also provides for treatment of higher flows without significantly increasing the velocity or turbulence in the treatment chamber. This allows for a more quiescent separation environment. Settleable solids and floating pollutants are captured and contained in the treatment chamber. Flow exits the treatment chamber through the outlet flow control, which manages the amount of flow that is treated and helps maintain the helical flow patterns developed within the treatment chamber. Flows exceeding the system's rated treatment flow are diverted away from the treatment chamber by the flow partition. Internal diversion of high flows eliminates the need for external bypass structures. During bypass, the head equalizing baffle applies head on the outlet flow control to limit the flow through the treatment chamber. This helps prevent re-suspension of previously captured pollutants. #### VortSentry HS - · Helical flow pattern enhances trapping and containment of pollutants - High treatment and bypass capacities - · Compact footprint ideal for congested sites - · Lightweight design easy to install - · Available in both inline and grate inlet configurations - · Quick manufacturing turnaround time ## Available Models . | | | CDS Model | Typical I
MH Dian
Equival
ft | neter or | - Color | epth ² Below
Invert
m | | uality Flow³
5 µm
L/s | | een
er/Height
m | | pical
Capacity
m³ | |------------------|------------|--------------|---------------------------------------|----------|---------|--|-----|-----------------------------|-----------|-----------------------|-------------|-------------------------| | | | CDS2015-4 | 4 | 1.2 | 3.5 | 1.1 | 0.7 | 19.8 | 2.0/1.5 | 0.6/0.5 | 0.5 | 0.4 | | | | CDS2015 | 5 | 1.5 | 5.2 | 1.6 | 0.7 | 19.8 | 2.0/1.5 | 0.6/0.5 | 1.3 | 1.0 | | | | CDS2020 | 5 | 1.5 | 5.7 | 1.7 | 1.1 | 31.2 | 2.0/2.0 | 0.6/0.6 | 1.3 | 1.0 | | | | CDS2025 | 5 | 1.5 | 6.0 | 1.8 | 1.6 | 45.3 | 2.0/2.5 | 0.6/0.8 | 1.3 | 1.0 | | | Inline | CDS3020 | 6 | 1.8 | 6.2 | 1.9 | 2.0 | 56.6 | 3.0/2.0 | 0.9/0.6 | 2.1 | 1.6 | | | 드 | CDS3030 | 6 | 1.8 | 7.1 | 2.2 | 3.0 | 85.0 | 3.0/3.0 | 0.9/0.9 | 2.1 | 1.6 | | | | CDS3035 | 6 | 1.8 | 7.6 | 2.3 | 3.8 | 106.2 | 3.0/3.5 | 0.9/1.1 | 2.1 | 1.6 | | | | CDS4030 | 8 | 2.4 | 8.6 | 2.6 | 4.5 | 127.4 | 4.0/3.0 | 1.2/0.9 | 5.6 | 4,3 | | | | CDS4040 | 8 | 2.4 | 9.7 | 3.0 | 6.0 | 169.9 | 4.0/4.0 | 1.2/1.2 | 5.6 | 4.3 | | | | CDS4045 | 8 | 2.4 | 10.3 | 3.1 | 7.5 | 212.4 | 4.0/4.5 | 1.2/1.4 | 5.6 | 4.3 | | | _ | CDS3020-D | 6 | 1,8 | 6.2 | 1.9 | 2.0 | 56.6 | 3.0/2.0 | 0.9/0.6 | 2.1 | 1.6 | | | | CDS3030-DV | 6 | 1.8 | 6.9 | 2.1 | 3.0 | 85.0 | 3.0/3.0 | 0.9/0.9 | 2.1 | 1.6 | | ** | | CDS3030-D | 6 | 1.8 | 7.1 | 2.2 | 3.0 | 85.0 | 3.0/3.0 | 0.9/0.9 | 2.1 | 1.6 | | Precast** | | CDS3035-D | 6 | 1.8 | 8.7 | 2.6 | 3.8 | 106.2 | 3.0/3.5 | 0.9/1.1 | 2.1 | 1.6 | | -F | | CDS4030-D | 7 | 2.1 | 8.6 | 2.6 | 4.5 | 127.4 | 4.0/3.0 | 1.2/0.9 | 4.3 | 3.3 | | | _ | CDS4040-D | 7 | 2.1 | 9.6 | 2.9 | 6.0 | 169.9 | 4.0/4.0 | 1.2/1.2 | 4.3 | 3.3 | | | in L | CDS4045-D | 7 | 2.1 | 10.1 | 3.1 | 7.5 | 212.4 | 4.0/4.5 | 1.2/1.4 | 4.3 | 3.3 | | | e_ | CDS5042-DV | 9.5 | 2.9 | 9.6 | 2.9 | 9.0 | 254.9 | 5.0/4.2 | 1.5/1.3 | 1.9 | 1.5 | | | Offline | CDS5640-D | 8 | 2.4 | 9.5 | 2.9 | 9.0 | 254.9 | 5.6/4.0 | 1.7/1.2 | 5.6 | 4.3 | | | 0 | CDS5050-DV | 9.5 | 2.9 | 10.3 | 3.1 | 11 | 311.5 | 5.0/5.0 | 1.5/1.5 | 1.9 | 1.5 | | | _ | CDS5653-D | 8 | 2.4 | 10.9 | 3.3 | 14 | 396.5 | 5.6/5.3 | 1.7/1.6 | 5.6 | 4.3 | | | _ | CDS5668-D | 8 | 2.4 | 12.4 | 3.8 | 19 | 538.1 | 5.6/6.8 | 1.7/2.1 | 5.6 | 4.3 | | | | CDS5678-D | 8 | 2.4 | 13.4 | 4.1 | 25 | 708.0 | 5.6/7.8 | 1.7/2.4 | 5.6 | 4.3 | | | | CDS7070-DV | 12 | 3.7 | 14 | 4.3 | 26 | 736.3 | 7.0/7.0 | 2.1/2.1 | 3.3 | 2.5 | | | _ | CDS10060-DV | 17.5 | 5.3 | 12 | 3.7 | 30 | 849.6 | 10.0/6.0 | 3.0/1.8 | 5.0 or 10.2 | 3.8 or 7.8 | | | | CDS10080-DV | 17.5 | 5.3 | 14 | 4.3 | 50 | 1416.0 | 10.0/8.0 | 3.0/2.4 | 5.0 or 10.2 | 3.8 or 7.8 | | | | CDS100100-DV | 17.5 | 5.3 | 16 | 4.9 | 64 | 1812.5 | 10.0/10.0 | 3.0/3.0 | 5.0 or 10.2 | 3.8 or 7.8 | | | <u>a</u> _ | CDS150134-DC | 22 | 6.7** | 22 | 6.7** | 148 | 4191.4 | 15.0/13.4 | 4.6/4.1 | 20.4 | 15.6 | | Cast In
Place | Offline | CDS200164-DC | 26 | 7.9** | 26 | 7.9** | 270 | 7646.6 | 20.0/16.4 | 6.1/5.0 | 20.4 | 15.6 | | | 0 | CDS240160-DC | 32 | 9.8** | 25 | 7.6** | 300 | 8496.2 | 24.0/16.0 | 7.3/4.9 | 20.4 | 15.6 | ^{**}Sump Capacities and Depth Below Pipe Invert can vary due to specific site design - 1. Structure diameter represents the typical inside dimension of the concrete structure. Offline systems will require additional concrete diversion components. - 2. Depth Below Pipe and Sump Capacities can vary to accommodate specific site design. - 3. Water Quality Flow is based on 80% removal of a Particle Size Distribution (PSD) having a mean particle size: d50=125-μm, which is a typical PSD gradation characterizing particulate matter (TSS/SSC) in urban rainfall runoff. Water Quality Flow, Particle Size & Performance Notes: - 80% removal (Re=80%) performance forecasts of the PSD having a d50=125-µm is derived from controlled tests of a unit equipped with 2400-µm screen. Performance forecasts for specific particle size gradations or d50s=50, 75, 125, 150 & 200-µm are also available. Removal forecasts based on unit evaluations conducted in accordance with the Technology Assessment Protocol Ecology (TAPE) protocols, Washington Department of Ecology (WASDOE). - Units can be sized to achieve specific Re performance for peak flow rates for specific Water Quality Flows, over the hydrograph of a Water Quality Storm Event or sized to meet a specific removal on an average basis using accepted probabilistic methods. When sizing based on a specific water quality flow rate, the required flow to be treated should be equal to or less than the listed water quality flow for the selected system. | Vortechs
Model | Swirl Chamber
Diameter | | Internal
Length | | Wat | ter Quality I
cfs / L/s | low¹ | | eak
ent Flow² | Sediment
Storage | | |-------------------|---------------------------|-----|--------------------|-----|-----------|----------------------------|------------|------|------------------|---------------------|-----| | | ft | m | ft | m | 50 μm | 110 µm | 200 μm | cfs | L/s | yd³ | m³ | | 1000 | 3 | 0.9 | 9 | 2.7 | 0.21/5.9 | 0.59/16.7 | 0.98/27.8 | 1.6 | 45.3 | 0.7 | 0.5 | | 2000 | 4 | 1.2 | 10 | 3.0 | 0.36/10.2 | 1.0/28.3 | 1.7/48.1 | 2.8 | 79.3 | 1.2 | 0.9 | | 3000 | 5 | 1.5 | 11 | 3.4 | 0.59/16.7 | 1.7/48.1 | 2.7/76.5 | 4.5 | 127.4 | 1.8 | 1,4 | | 4000 | 6 | 1.8 | 12 | 3.7 | 0.78/22.1 | 2.2/62.3 | 3.7/104.8 | 6.0 | 169.9 | 2.4 | 1.8 | | 5000 | 7 | 2.1 | 13 | 4.0 | 1.1/31.1 | 3.1/87.8 | 5.2/147.2 | 8.5 | 240.7 | 3.2 | 2.4 | | 7000 | 8 | 2.4 | 14 | 4.3 | 1.4/39.6 | 4.1/116.1 | 6.7/189.7 | 11.0 | 311.5 | 4.0 | 3.1 | | 9000 | 9 | 2.7 | 15 | 4.6 | 1.8/51.0 | 5.2/147.2 | 8.5/240.7 | 14.0 | 396.4 | 4.8 | 3,7 | | 11000 | 10 | 3.0 | 16 | 4.9 | 2.3/65.1 | 6.5/184.1 | 10.7/303.0 | 17.5 | 495.5 | 5.6 | 4.3 | | 16000 | 12 | 3.7 | 18 | 5.5 | 3.3/93.4 | 9.3/263.3 | 15.3/433.2 | 25.0 | 707.9 | 7.1 | 5.4 | ^{1.} Water Quality Flow Rates are based on 80% removal for the particle size distributions (PSD) listed above with d50 = 50, 110 & 200-μm. Particle size should be chosen based on anticipated sediment load. Cast-in-place system are available to treat higher flows. Check with your local representatives for specifications. | VortSentry
Model | | hamber
neter | | Depth
Invert | | ality Flow¹ | | . Size
Outlet | Sediment
Storage | | |---------------------|----|-----------------|------|-----------------|------|-------------|----|------------------|---------------------|----------------| | | ft | m | ft | m | cfs | L/s | in | mm | yd³ | m ³ | | VS30* | 3 | 0.9 | 5.8 | 1.8 | 0.26 | 7.4 | 12 | 300 | 0.8 | 0.6 | | VS40 | 4 | 1.2 | 7.0 | 2.1 | 0.58 | 16.4 | 18 | 460 | 1.4 | 1.1 | | VS50* | 5 | 1.5 | 8.0 | 2.4 | 1.1 | 31.1 | 18 | 460 | 2.2 | 1.7 | | VS60 | 6 | 1.8 | 8.9 | 2.7 | 1.8 | 51.0 | 24 | 600 | 3.1 | 2.4 | | VS70* | 7 | 2.1 | 9.7 | 3.0 | 2.7 | 76.5 | 30 | 750 | 4.3 | 3.3 | | VS80 | 8 | 2.4 | 10.1 | 3.1 | 3.9 | 110.4 | 36 | 600 | 5.6 | 4.3 | ^{*} Denotes models may not be manufactured in your area. Check with your local representative for availability. ^{1.} Water Quality Flow is based on 80% removal of a particle size distribution with an average particle size of 110-μm. This flow also represents the maximum flow prior to which bypass occurs. | VortSentry HS | | hamber | Typical Depth
Below Invert | | | ality Flow ¹ | - | . Size | Sediment | | |---------------|----|-----------------|-------------------------------|----------|--------------------|-------------------------|-----------
------------|-------------|--------| | Model | ft | meter | ft | | |) μm | | Outlet | Stor | - TANK | | HS36* | 3 | m
0.9 | 5.6 | m | cfs
0.55 | L/s | <u>in</u> | mm | yd³
o. c | m³ | | HS48 | 4 | 1.2 | 6.8 | 2.1 | 1.2 | 15.6
34.0 | 18
24 | 460
600 | 0.5 | 0.4 | | HS60* | 5 | 1.5 | 8.0 | 2.4 | 2.2 | 62.3 | 30 | 760 | 1.5 | 1.1 | | HS72 | 6 | 1.8 | 9.2 | 2.8 | 3.7 | 104.8 | 36 | 900 | 2.1 | 1.6 | | HS84* | 7 | 2.1 | 10.4 | 3.2 | 5.6 | 158.6 | 42 | 1050 | 2.8 | 2.1 | | HS96 | 8 | 2.4 | 11.5 | 3.5 | 8.1 | 229.4 | 48 | 1200 | 3.7 | 2.8 | ^{*} Models may not be manufactured in your area. Check with your local representative for availability. Notes: Systems can be sized based on a water quality flow (e.g. 1 inch storm) or on a net annual basis depending on the local regulatory requirement. When sizing based on a water quality storm, the required flow to be treated should be equal or less than the listed water quality flow for the selected system. Systems sized based on a water quality storm are generally more conservatively sized. Additional particle size distributions are available for sizing purposes upon request. Depth below invert is measured to the inside bottom of the system. This depth can be adjusted to meet specific storage or maintenance requirements. Contact our support staff for the most cost effective sizing for your area. ^{2.} Peak Treatment Flow is maximum flow treated for each unit listed. This flow represents an infrequent storm event such as a 10 or 25 yr storm. Standard Vortechs System depth below invert is 3' for all precast models. Water Quality Flow is based on 80% removal of a particle size distribution with an average particle size of 240 µm. This flow also represents the maximum flow prior to which bypass occurs. # **Customer Support** #### Installation CONTECH Stormwater Solutions' products are some of the easiest to install in the industry. We provide comprehensive installation drawings, details and instructions, as well as full technical support on every project. #### Maintenance Maintenance of CONTECH Stormwater Solutions products is cost effective, straightforward and efficient. We offer a complete range of engineering planning, design and drawing, and construction services that can be tailored to your specific site needs. #### Support - Drawings and specifications are available at contechstormwater.com. - Site-specific design support is available from our professional engineering staff engineers. 800.338.1122 contech-cpi.com #### ©2008 CONTECH Construction Products CONTECH Construction Products Inc is your single source for hassle-free specifying and purchasing of comprehensive site solutions. CONTECH's portfolio includes bridges, drainage, erosion control, retaining wall, sanitary sewer, soil stabilization and stormwater solutions. Nothing in this catalog should be construed as an expressed warranty or an implied warranty of merchantability or fitness for any particular purpose. See the CONTECH standard quotation or acknowledgement for applicable warranties and other terms and conditions of sale. The product(s) described may be protected by on[] 6,406,218; 6,641,72[] Vortechs, VortSentry, VortSentry HS, and CDS are trademarks, registered trademarks, or licensed trademarks of CONTECH Construction Products Inc. #### **OPERATIONS AND MAINTENANCE GUIDELINES** #### **CDS Stormwater Treatment Unit** #### INTRODUCTION The CDS unit is an important and effective component of your storm water management program and proper operation and maintenance of the unit are essential to demonstrate your compliance with local, state and federal water pollution control requirements. The CDS technology features a patented non-blocking, indirect screening technique developed in Australia to treat water runoff. The unit is highly effective in the capture of suspended solids, fine sands and larger particles. Because of its non-blocking screening capacity, the CDS unit is un-matched in its ability to capture and retain gross pollutants such as trash and debris. In short, CDS units capture a very wide range of organic and in-organic solids and pollutants that typically result in tons of captured solids each year such as: Total suspended solids (TSS) and other sedimentitious materials, oil and greases, trash, and other debris (including floatables, neutrally buoyant, and negatively buoyant debris). These pollutants will be captured even under very high flow rate conditions. CDS units are equipped with conventional oil baffles to capture and retain oil and grease. Laboratory evaluations show that the CDS units are capable of capturing up to 70% of the free oil and grease from storm water. CDS units can also accommodate the addition of oil sorbents within their separation chambers. The addition of the oil sorbents can ensure the permanent removal of 80% to 90% of the free oil and grease from the storm water runoff. #### **OPERATIONS** The CDS unit is a non-mechanical self-operating system and will function any time there is flow in the storm drainage system. The unit will continue to effectively capture pollutants in flows up to the design capacity even during extreme rainfall events when the design capacity may be exceeded. Pollutants captured in the CDS unit's separation chamber and sump will be retained even when the units design capacity is exceeded. #### **CDS UNIT INSPECTION** Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection (and clean out) of the separation chamber (screen/cylinder) & sump and another allows inspection (and cleanout) of sediment captured and retained behind the screen. The unit should be periodically inspected to determine the amount of accumulated pollutants and to ensure that the cleanout frequency is adequate to handle the predicted pollutant load being processed by the CDS unit. The unit should be periodically inspected for indications of vector infestation, as well. The recommended cleanout of solids within the CDS unit's sump should occur at 75% to 85% of the sump capacity. However, the sump may be completely full with no impact to the CDS unit's performance. CONTECH Stormwater Solutions (previously CDS Technologies) recommends the following inspection guidelines: For new initial operation, check the condition of the unit after every runoff event for the first 30 days. For ongoing operations, the unit should be inspected after the first six inches of rainfall at the beginning of the rainfall season and at approximately 30-day intervals. The visual inspection should ascertain that the unit is functioning properly (no blockages or obstructions to inlet and/or separation screen), evidence of vector infestation, and to measure the amount of solid materials that have accumulated in the sump, fine sediment accumulated behind the screen, and floating trash and debris in the separation chamber. This can be done with a calibrated dipstick, tape measure or other measuring instrument so that the depth of deposition in the sump can be tracked. #### **CDS UNIT CLEANOUT** The frequency of cleaning the CDS unit will depend upon the generation of trash and debris and sediments in your application. Cleanout and preventive maintenance schedules will be determined based on operating experience unless precise pollutant loadings have been determined. Access to the CDS unit is typically achieved through two manhole access covers – one allows cleanout of the separation chamber (screen/cylinder) & sump and another allows cleanout of sediment captured and retained behind the screen. For units possessing a sizable depth below grade (depth to pipe), a single manhole access point would allow both sump cleanout and access behind the screen. CONTECH Stormwater Solutions Recommends The Following: NEW INSTALLATIONS: Check the condition of the unit after every runoff event for the first 30 days. The visual inspection should ascertain that the unit is functioning properly (no blockages or obstructions to inlet and/or separation screen), measuring the amount of solid materials that have accumulated in the sump, the amount of fine sediment accumulated behind the screen, and determining the amount of floating trash and debris in the separation chamber. This can be done with a calibrated "dip stick" so that the depth of deposition can be tracked. Refer to the "Cleanout Schematic" (Appendix B) for allowable deposition depths and critical distances. Schedules for inspections and cleanout should be based on storm events and pollutant accumulation. ONGOING OPERATION: During the rainfall season, the unit should be inspected at least once every 30 days. The floatables should be removed and the sump cleaned when the sump is 75-85% full. If floatables accumulate more rapidly than the settleable solids, the floatables should be removed using a vactor truck or dip net before the layer thickness exceeds approximately one foot. Cleanout of the CDS unit at the end of a rainfall season is recommended because of the nature of pollutants collected and the potential for odor generation from the decomposition of ma terial collected and retai ned. This end of season cleanout will assist in preventing the discharge of pore water from the CDS [®] unit during summer months. <u>USE OF SORBENTS</u> –The addition of sorbents is **not a requirement** for CDS units to effectively control oil and grease from storm water. The conventional oil baffle within a unit assures satisfactory oil and grease removal. However, the addition of sorbents is a unique enhancement capability unique to CDS units, enabling increased oil and grease capture efficiencies beyond that obtainable by conventional oil baffle systems. Under normal operations, CDS units will provide effluent concentrations of oil and grease that are less than 15 parts per million (ppm) for all dry weather spills where the volume is less than or equal to the spill capture volume of the CDS unit. During
wet weat her flows, the oil baffle system can be expected to remove between 40 and 70% of the free oil and grease from the storm water runoff. CONTECH Stormwater Solutions only recommends the addition of sorbents to the separation chamber if there are specific land use activities in the catchment watershed that could produce exceptionally large concentrations of oil and grease in the runoff, concentration levels well above typical amounts. If site evaluations merit an increased control of free oil and grease then oil sorbents can be added to the CDS unit to thoroughly address these particular pollutants of concern. #### Recommended Oil Sorbents Rubberizer® Particulate 8-4 mesh or OARS ™ Particulate for Filtration, HPT4100 or equal. Rubberizer is supplied by Haz-Mat Response Technologies, Inc. 4626 Sant a Fe Street, San Diego, CA 92109 (800) 542-3036. OARS is supplied by AbTech Industries, 4110 N. Scottsdale Road, Suite 235, Scottsdale, AZ 85251 (800) 545-8999. The amount of sorbent to be added to the CDS separation chamber can be determined if sufficient information is known about the concentration of oil and grease in the runoff. Frequent ly the actual concentrations of oil and grease are too variable and the amount to be added and frequency of cleaning will be determined by periodic observation of the sorbent. As an initial application, CDS recommends that approximately 4 to 8 pounds of sorbent material be added to the separation chamber of the CDS units per acre of parking lot or road surface per year. Typically this amount of sorbent results in a ½ inch to one (1") inch depth of sorbent material on the liquid surface of the separation chamber. The oil and grease loading of the sorbent material should be observed after major storm events. Oil Sorbent material may also be furnished in pillow or boom configurations. The sorbent material should be replaced when it is fully discolore d by skimming the sorbent from the surface. The sorbent may require disposal as a spec ial or hazardous waste, but will depend on local and state regulatory requirements. #### **CLEANOUT AND DISPOSAL** A vactor truck is recommended for cleanout of the CDS unit and can be easily accomplished in less than 30-40 minutes for most installations. Standard vactor operations should be employed in the cleanout of the CDS unit. Disposal of material from the CDS unit should be in accordance with the local municipalit y's requirements. Disposal of the decant material to a POTW is recommended. Field decanting to the storm drainage system is not recommended. Solids can be disposed of in a similar fashion as those materials collected from street sweeping operations and catch-basin cleanouts. #### **MAINTENANCE** The CDS unit should be pumped down at least once a year and a thorough inspection of the separation chamber (inlet/cylinder and separation screen) and oil baffle performed. The unit's inter nal components should not show any signs of damage or any loosening of the bolts used to fasten the various components to the manhole structure and to each other. Ideally, the screen should be power washed for the inspection. If any of the internal components is damaged or if any fasteners appear to be damaged or missing, please contact CONTECH at 800.338.2211 to make arrangements to have the damaged items repaired or replaced. The screen assembly is fabricated from Type 316 stainless steel and fastened with Type 316 stainless steel fasteners that are easily removed and/or replaced with conventional hand tools. The damaged screen assembly should be replaced with the new screen assembly placed in the same orientation as the one that was removed. #### **CONFINED SPACE** The CDS unit is a confined space environ ment and only properly trained personn el possessing the neces sary safety equipment s hould enter the unit to perform particular maintenance and/or inspection activities beyond normal procedure. Inspections of the internal components can, in most cases, be accomplished by observations from the ground surface. #### VECTOR CONTROL Most CDS units do not readily facilitate vector infestation. However, for CDS units that may experience extended periods of non-operation (stagnant flow conditions for more than approximately one week) there e may be the potential for vector infestation. In the event that these conditions exist, the CDS unit may be designed to minimize potential vector habitation through the use of physical barriers (such as seals, plugs and/or netting) to seal out potential vectors. The CDS unit may also be configured to allow drain-down under favorable soil conditions where infiltration of storm water runoff is permissible. For standard CDS units that show evidence of mosquito infestation, the #### CDS3020 DESIGN NOTES CDS3020 RATED TREATMENT CAPACITY IS 2.0 CFS, OR PER LOCAL REGULATIONS. MAXIMUM HYDRAULIC INTERNAL BYPASS CAPACITY IS 20.0 CFS. IF THE SITE CONDITIONS EXCEED 20.0 CFS, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED. THE STANDARD CDS3020 CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS. | DESIGNATION (MODEL SUFFIX) | CONFIGURATION DESCRIPTION | |----------------------------|---| | G | GRATED INLET ONLY (NO INLET PIPE) | | GP | GRATED INLET WITH INLET PIPE OR PIPES | | К | CURB INLET ONLY (NO INLET PIPE) | | KP | CURB INLET WITH INLET PIPE OR PIPES | | В | SEPARATE OIL BAFFLE (SINGLE INLET PIPE REQUIRED FOR THIS CONFIGURATION) | | W | SEDIMENT WEIR FOR NJDEP / NJCAT CONFORMING UNITS | | | SITE SI | PECIFIC | | | | | | | | | |-------------------------------------|-----------|----------------|-----|---|--|--|--|--|--|--| | DATA | A REQI | JIREMEN | IT: | S | | | | | | | | STRUCTURE ID | | | | | | | | | | | | WATER QUALIT | TY FLOW F | RATE (CFS) | | | | | | | | | | PEAK FLOW RA | ATE (CFS) | | | • | | | | | | | | RETURN PERIO | DD OF PEA | K FLOW (YRS | 3) | • | | | | | | | | SCREEN APERTURE (2400 OR 4700) | | | | | | | | | | | | PIPE DATA: I.E. MATERIAL DIAMETER | | | | | | | | | | | | INLET PIPE 1 * * * | | | | | | | | | | | | INLET PIPE 2 | * | • | | * | | | | | | | | OUTLET PIPE | * | * | | * | | | | | | | | RIM ELEVATION | N . | | | * | | | | | | | | ANTI-FLOTATION BALLAST WIDTH HEIGHT | | | | | | | | | | | | NOTES/SPECIAL REQUIREMENTS: | | | | | | | | | | | | * PER ENGINEER OF RECORD | | | | | | | | | | | #### **GENERAL NOTES** - 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. - 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY. - 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH STORMWATER SOLUTIONS REPRESENTATIVE. www.contechstormwater.com - CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. - 5. STRUCTURE AND CASTINGS SHALL MEET AASHTO HS20 LOAD RATING. #### INSTALLATION NOTES - ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD. - 2. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED). - CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE. - CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. - 5. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED. CDS3020 PRECAST CONCRETE WATER QUALITY SYSTEM STANDARD DETAIL application of larvicide is one control strategy that is recommended. Typical larvicide applications are as follows: SOLID B.t.i. LARVICIDE: ½ to 1 briquet (typically treats 50-100 sq. ft.) one time per month (30-days) or as directed by manufacturer. <u>SOLID METHOPRENE LARVICIDE</u> (not recommended for some locations): ½ to 1 briquet (typically treats 50-100 sq. ft.) one time per month (30-days) to once every 4-½ to 5-months (150-days) or as directed by manufacturer. #### RECORDS OF OPERATION AND MAINTENANCE CONTECH Stormwater Solutions recomme nds that the owner maintain annual records of the operation and maintenance of the CDS unit to document the effective maintenance of this import ant component of your storm water management program. The attached **Annual Record of Operations and Maintenance** form (see **Appendix A**) is suggested and should be retained for a minimum period of three years. # APPENDIX A ANNUAL RECORDS OF OPERATIONS & MAINTENANCE AND INSPECTION CHECKLISTS # ANNUAL RECORD OF OPERATION AND MAINTENANCE | DEPTH FROM COVER TO BOTTOM OF SUMP (SUMP INVERT) DEPTH FROM COVER TO SUMP @ 75% FULL OCUME OF SUMP @ 75% FULL =CUYD OCUME/INCH DEPTHCUYD/IN OF SUMP OCUME/INCH DEPTHCUYD/IT OF SUMP Calculate Sediment Volume = (Depth to Sump Invert – Depth to Sediment)*(Volume/inch) DESERVATIONS OF FUNCTION: CELEANOUT: ATE VOLUME | OWNER RE | PRESENTAT | IVE | | PHONE | |
---|--|-------------------------|-------------------|---|--------------------------|--------------------| | DATE/INSPECTOR SCREEN/INLET INTEGRITY FLOATABLES SEDIMENT VOLUME* (Inches) DEPTH OF SEDIMENT VOLUME* (CUYDS) SEDIMENT VOLUME* (CUYDS) DEPTH FROM COVER TO BOTTOM OF SUMP (SUMP INVERT) DEPTH FROM COVER TO SUMP @ 75% FULL COLUME OF SUMP @ 75% FULL =CUYD COLUME/INCH DEPTHCUFT/IN OF SUMP COLUME/FOOT DEPTHCUYD/FT OF SUMP Calculate Sediment Volume = (Depth to Sump Invert – Depth to dediment)*(Volume/inch) BESERVATIONS OF FUNCTION: SELEANOUT: ATE VOLUME | MODE
SITE | EL DESIGNAT
LOCATION | | | DATE | | | INSPECTOR INTEGRITY DEPTH SEDIMENT (CUYDS) DISCOLORATION (Inches) CUYDS) DEPTH FROM COVER TO BOTTOM OF SUMP (SUMP INVERT) DEPTH FROM COVER TO SUMP @ 75% FULL OLUME OF SUMP @ 75% FULL =CUYD OLUME/INCH DEPTHCUYD/IN OF SUMP Calculate Sediment Volume = (Depth to Sump Invert – Depth to Sediment)*(Volume/inch) DESERVATIONS OF FUNCTION: DEPTH FROM COVER TO SUMP @ 75% FULL =CUYD CUYD/FT OF SUMP CALCULATE SEDIMENTS | | | 5 5 6 6 7 6 7 5 6 | DEPTH TO | SEDIMENT | T | | PLOATABLES SEDIMENTS AND SORBENTS DBSERVATIONS: GCREEN MAINTENANCE: | | | | | | DISCOLORATION | | DEPTH FROM COVER TO SUMP @ 75% FULL | | | | | | | | DEPTH FROM COVER TO SUMP @ 75% FULL | | | | | INC. SERVE MANO | | | DEPTH FROM COVER TO SUMP @ 75% FULLCUYD /OLUME OF SUMP @ 75% FULL =CUYD /OLUME/INCH DEPTHCUFT/IN OF SUMP /OLUME/FOOT DEPTHCUYD/FT /OL | C44 - M-0 - 50 | | | | | | | DEPTH FROM COVER TO SUMP @ 75% FULL | SEPTH EPON | I COVER TO E | OTTOM OF SUM | D /SI IMD INI/EDT | <u> </u> | | | COLUME/INCH DEPTHCUFT/IN OF SUMP COLUME/FOOT DEPTHCUYD/FT OF SUMP Calculate Sediment Volume = (Depth to Sump Invert – Depth to Sediment)*(Volume/inch) DESERVATIONS OF FUNCTION: | | | | | | | | Calculate Sediment Volume = (Depth to Sump Invert – Depth to Sediment)*(Volume/inch) DBSERVATIONS OF FUNCTION: CLEANOUT: ATE VOLUME SEDIMENTS AND SORBENTS DBSERVATIONS: CREEN MAINTENANCE: | OLUME OF | SUMP @ 75% | FULL =Cl | JYD | | | | Calculate Sediment Volume = (Depth to Sump Invert – Depth to Sediment)*(Volume/inch) DBSERVATIONS OF FUNCTION: CLEANOUT: ATE VOLUME VOLUME METHOD OF DISPOSAL OF FLOATABLES, SEDIMENTS, DECAN AND SORBENTS DBSERVATIONS: CREEN MAINTENANCE: | OLUME/INC | H DEPTH | cu | FT/IN OF SUMP | | | | BESERVATIONS OF FUNCTION: CLEANOUT: | OLUME/FO | OT DEPTH | cn. | YD/FT OF SUMP | | | | PATE VOLUME SEDIMENTS METHOD OF DISPOSAL OF FLOATABLES, SEDIMENTS, DECAN AND SORBENTS DESERVATIONS: CREEN MAINTENANCE: | Sediment)*(| Volume/inch |) | | 830 | | | PATE VOLUME SEDIMENTS METHOD OF DISPOSAL OF FLOATABLES, SEDIMENTS, DECAN AND SORBENTS DESERVATIONS: CREEN MAINTENANCE: | | | | And a many | | | | PLOATABLES SEDIMENTS AND SORBENTS DBSERVATIONS: GCREEN MAINTENANCE: | | | ILIME MET | HOD OF DISPOSAL | OF ELOATABLES | SEDIMENTS DECAN | | SCREEN MAINTENANCE: | Contract Con | | | | or rearrance, | - DEDMICHTO, DEGAN | | SCREEN MAINTENANCE: | | | | | SO 10 100-2 | | | DBSERVATIONS: BCREEN MAINTENANCE: DATE OF POWER WASHING, INSPECTION AND OBSERVATIONS: | | | | 100 × 100
× 100 × | | | | SCREEN MAINTENANCE: | | | | | t one a second design of | | | | BSERVATIO | NS: | | | | | | | | | | | | _ | | | | | | | | | | | | | | ND OBSERVATION | ONS: | | | | | | | | | | #### **INSPECTION CHECKLIST** | | 1. | During the rainfall season, inspect and check condition of unit at east once every 30 days | | |---|-----|--|--| | | 2. | Ascertain that the unit is funcioning properly (no blockages or obstructions to inlet and/or separation screen) | | | | 3. | Measure amount of solid material s that have accumulated in the sump (Unit should be cleaned when the sump is 75-85% full) | | | | 4. | Measure amount of fine sediment accumulated behind the screen | | | | 5. | Measure amount of floating trash and debris in the separation chamber | | | M | ΑIN | ITENANCE CHECKLIST | | | | 1. | Cleanout unit at the end and beginning of the rainfall season | | | | 2. | Pump down unit (at least once a year) and thoroughly inspect separation chamber, separation screen and oil baffle | | | | 3. | No visible signs of damage or loosening of bolts to internal components observed * | | ^{*} If there is any damage to the internal components or any fasteners are damaged or missing please contact CONTECH (800.338.1122). #### ChamberMaxx™ ChamberMaxx is the latest in corrugated, open-bottom arch systems designed to economically collect, detain, retain and infiltrate stormwater runoff. The belowgrade system maximizes available land for development, and can support traffic loading for installation under parking lots and roadways. The chambers are injection molded using structurally efficient and corrosiveresistant polypropylene resin. In retention applications, the ChamberMaxx system effectively recharges groundwater to achieve reduced discharge objectives, including Low Impact Development (LID), and Leadership Energy and Environmental Design (LEED). The system is most effective on sites where the depth from finished grade to storm sewer outlet is less than 54-inches (1.37-meters). For sites with deeper applications refer to the other CONTECH family of retention/detention products, such as concrete arches and corrugated metal pipe systems. With 49 ft³ (1.39 m³) of available storage per chamber, ChamberMaxx is the most cost efficient of its kind. Innovative subcorrugations provide greater strength and the chambers utilize a resin efficient design. A short height profile optimizes stormwater storage on shallow sites. Lightweight chambers allow for placement without the use of heavy equipment. Install a CONTECH pre-treatment water quality unit, upstream of the ChamberMaxx system for the highest level of performance at the lowest cost. This combined water quality and quantity system reduces maintenance costs by capturing the pollutants in one confined location, and extends the performance life of the overall system by reducing occlusion of the void space within the surrounding stone. CONTECH also offers the optional ChamberMaxx Containment Row. Contact your local representative for assistance in selecting the most efficient pre-treatment solution. # Going Green? Looking for LID Solutions? Need LEED Credits? Specify ChamberMaxx on Your Next Project! #### Performance Testing ChamberMaxx has undergone a thorough structural analysis by structural engineers and full scale in-ground field burial tests have been performed. The chambers are structurally designed to exceed HS-20/HS-25 live loads in accordance with AASHTO (Section 12) LRFD design specifications for stormwater chambers. Structural performance is dependent on proper installation per the ChamberMaxx installation guidelines. #### Design ChamberMaxx has a multitude of layout and configuration options. Contact your local representative for assistance optimizing your system to meet your site specific design requirements. For flow routing see the ChamberMaxx stagestorage curve (available in this brochure) or download the ChamberMaxx stage-storage calculator at www.contechstormwater.com. #### Design Your Own Detention System Our DYODS™ (Design Your Own Detention System) sizing calculator, makes it is easy to design the right ChamberMaxx for your site. Visit www.contechstormwater.com/dyods to: - · Size system and lay out footprint - · Quantify construction materials - · Receive graphic plan view layout #### HydroCAD® ChamberMaxx is supported in HydroCAD — a computer aided design tool for modeling stormwater runoff available from our partners at HydroCAD Software LLC. - · Download at www.hydrocad.net - Easy modeling for stormwater flows — automatic storage calculations - Simple to use just select CONTECH products from drop-down menu - Effortlessly compare systems with real time evaluation of hydraulic differences DYODS TM Design Your Own Detention System Make your job easier with our design tools! #### Sizing The ChamberMaxx system combines middle chambers, which are open on both ends, with start and end chambers, which include an integral end wall. All chambers have sidewall perforations that allows water to equalize throughout the system. ChamberMaxx utilizes a header manifold system that can be manufactured from various materials. Commonly utilized header pipe materials are corrugated metal pipe (CMP) and HDPE pipe, and are available from CONTECH in a single package. The start and end chambers can accept up to a 24-inch diameter (0.61 meter) inlet pipe. | Chamber
Part | Width | | Height | | Weight | | Actual
Length | | *Installed
Length | | | | orage *Installed Solume Volum | | |-----------------|-------|--------|--------|--------|--------|---------|------------------|--------|----------------------|--------|------|--------|-------------------------------|--------| | | lin | (m) | in | (m) | lbs | (kg) | in | (m) | in | (m) | ď | (m³) | ď | (m³) | | Start | 51.4 | (1.31) | 30.3 | (0.77) | 85.0 | (38.55) | 98.4 | (2.50) | 96.2 | (2.44) | 52.5 | (1.48) | 78.7 | (2.22) | | Middle | 51.4 | (1.31) | 30.3 | (0.77) | 77.0 | (34.92) | 91.0 | (2.31) | 85.4 | (2.17) | 49.3 | (1.40) | 76.7 | (2.17) | | End - | 51.4 | (1.31) | 30.3 | (0.77) | 76.0 | (34.47) | 92.0 | (2.34) | 88.5 | (2.25) | 48.2 | (1.36) | 76.1 | (2.15) | ^{*}Six-inches (0.15 meters) of stone below and above chamber and 5-inch (0.13 meters) chamber spacing and 40% stone porosity. #### KEY 🗘 - FLEXIBLE PAVEMENT. GRANULAR ROAD BASE. - WELL GRADED GRANULAR FILL. AASHTO M145 A1, A2, OR A3. COMPACT TO MIN. 90% STANDARD DENSITY PER AASHTO T99. FREE DRAINING ANGULAR WASHED STONE 34" (19 mm) 2" (51 mm) - 4" (102 mm) SCHEDULE 40 PVC RISER CONCRETE COLLAR PARTICLE SIZE. COMPACT TO MIN. 90% STANDARD DENSITY WITH RING AND COVER (BY OTHERS) PER AASHTO T99 CONTECH C-40 (SUPPLIED BY OTHERS) PAVEMENT NON-WOVEN 12" (305 mm) Mitt. GEOTEXTILE 6" (152 mm) MIN. 33.3* (770 mm) SUITABILITY OF SUBGRADE TO BE VERIFIED BY ENGINEER OF RECORD (152 mm) OPTIONAL NON-WOVEN MIN. 51.4" 56.4" GEOTEXTILE TO PREVENT 12" (305 mm) (1306 mm) (433 mm) SOIL MIGRATION 5" (127 mm) MIN. (TYP) (TYP) (TYP) MIN SPACING SCOUR PROTECTION NETTING SECTION A-A (TYP) (HQDHQ5 LIVE LOAD) PER AASHTO 12 (TYP OF ALL INLET PIPES) #### ChamberMaxx Flow Routing Stage Storage Table | Elev | ation | | ge Volume
12" of Stone | | er Storage | | ive Volume
ement | | tive Storage | |------|---|-----------------|---------------------------|------|------------|-----------------|---------------------|-----------------|---------------| | in | (m) | ft ³ | (m³) | ft³ | (m³) | ft ³ | (m³) | ft ^a | ilume
(m³) | | 42.0 | (1.07) | A 62.6 | (1.77) | 49.3 | (1.40) | 1.3 | (0.04) | 76.7 | (2.17) | | 40.8 | (1.04) 일 | 61.3 | (1.74) | 49.3 | (1.40) | 1.3 | (0.04) | 75.3 | (2.13) | | 39.6 | (1.01) | 59.9 | (1.70) | 49.3 | (1.40) | 1.3 | (0.04) | 74.0 | (2.10) | | 38.4 | (0.98) 🕏 | 58.6 | (1.66) | 49.3 | (1.40) | 1.3 | (0.04) | 72.6 | (2.06) | | 37.2 | (1.04) aud 5 3 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 57.3 | (1.62) | 49.3 | (1.40) | 1.3 | (0.04) | 71.3 | (2.02) | | 36.0 | (0.91) 🚊 | 55.9 | (1.58) | 49.3 | (1.40) | 0.2 | (0.01) | 70.0 | (1.98) | | 34.8 | (0.88) | ▼ 55.7 | (1.58) | 49.0 | (1.39) | 0.5 | (0.01) | 68.2 | (1.93) | | 33.6 | (0.85) | 55.2 | (1.56) | 48.6 | (1.38) | 0.7 | (0.02) | 66.5 | (1.88) | | 32.4 | (0.82) | 54.5 | (1.54) | 47.8 | (1.35) | 1.1 | (0.03) | 64.8 | (1.84) | | 31.2 | (0.79) | 53.5 | (1.52) | 46.8 | (1.33) | 1.3 | (0.04) | 62.8 | (1.78) | | 30.0 | (0.76) | 52.2 | (1.48) | 45.5 | (1.29) | 1.5 | (0.04) | 60.7 | (1.72) | | 28.8 | (0.73) | 50.7 | (1.44) | 44.0 | (1.25) | 1.6 | (0.05) | 58.5 | (1.66) | | 27.6 | (0.70) | 49.0 | (1.39) | 42.4 | (1.20) | 1.8 | (0.05) | 56.1 | (1.59) | | 26.4 | (0.67) | 47.3 | (1.34) | 40.6 | (1.15) | 1.9 | (0.05) | 53.8 | (1.52) | | 25.2 | (0.64) | 45.4 | (1.29) | 38.8 | (1.10) | 1.9 | (0.05) | 51.3 | (1.45) | | 24.0 | (0.61) | 43.5 | (1.23) | 36.8 | (1.04) | 2.0 | (0.06) | 48.8 | (1.38) | | 22.8 | (0.58) | 41.5 | (1.18) | 34.8 |
(0.99) | 2.1 | (0.06) | 46.3 | (1.31) | | 21.6 | (0.55) | 39.4 | (1.12) | 32.7 | (0.93) | 2.2 | (0.06) | 43.7 | (1.24) | | 20.4 | (0.52) | 37.2 | (1.05) | 30.5 | (0.86) | 2.2 | (0.06) | 41.0 | (1.16) | | 19.2 | (0.49) | 35.0 | (0.99) | 28.3 | (0.80) | 2.3 | (0.07) | 38.3 | (1.09) | | 18.0 | (0.46) | 32.7 | (0.93) | 26.0 | (0.74) | 2.4 | (0.07) | 35.6 | (1.01) | | 16.8 | (0.43) | 30.3 | (0.86) | 23.6 | (0.67) | 2.4 | (0.07) | 32.9 | (0.93) | | 15.6 | (0.40) | 27.9 | (0.79) | 21.2 | (0.60) | 2.5 | (0.07) | 30.1 | (0.85) | | 14.4 | (0.37) | 25.4 | (0.72) | 18.7 | (0.53) | 2.5 | (0.07) | 27.2 | (0.77) | | 13.2 | (0.34) | 22.8 | (0.65) | 16.2 | (0.46) | 2.6 | (0.07) | 24.4 | (0.69) | | 12.0 | (0.30) | 20.3 | (0.58) | 13.6 | (0.39) | 2.6 | (0.07) | 21.5 | (0.61) | | 10.8 | (0.27) | 17.6 | (0.50) | 10.9 | (0.31) | 2.7 | (0.08) | 18.6 | (0.53) | | 9.6 | (0.24) | 14.9 | (0.42) | 8.3 | (0.24) | 2.7 | (80.0) | 15.6 | (0.44) | | 8.4 | (0.21) | 12.2 | (0.35) | 5.6 | (0.16) | 2.8 | (0.08) | 12.7 | (0.36) | | 7.2 | (0.18) | 9.5 | (0.27) | 2.8 | (0.08) | 2.8 | (0.08) | 9.7 | (0.28) | | 6.0 | (0.15) | 6.7 | (0.19) | 0.0 | (0.00) | 1.3 | (0.04) | 6.7 | (0.19) | | 4.8 | (0.12) 5 | 5.3 | (0.15) | 0.0 | (0.00) | 1.3 | (0.04) | 5.3 | (0.15) | | 3.6 | (0.12) log (0.09) (0.09) | 4.0 | (0.11) | 0.0 | (0.00) | 1.3 | (0.04) | 4.0 | (0.11) | | 2.4 | (0.06) 및 | 2.7 | (0.08) | 0.0 | (0.00) | 1.3 | (0.04) | 2.7 | (80.0) | | 1.2 | (0.06) pu | 1.3 | (0.04) | 0.0 | (0.00) | 1.3 | (0.04) | 1.3 | (0.04) | | 0.0 | (0.00) | 0.0 | (0.00) | 0.0 | (0.00) | 787 | 9.8 | 0.0 | (0.00) | *Six-inches (0.15 meters) of stone below and above chamber and 5-inch (0.13 meters) chamber spacing and 40% stone porosity. Proper design of any detention system typically requires that flow routing be performed. Engineers at CONTECH can be a valuable resource when designing a ChamberMaxx retention system. Typically stage-storage curves like those shown are utilized in the analysis. CONTECH stage-storage calculator is available for download on www.contechstormwater.com. This information can simply be inserted into common hydrology/hydraulic software such as HydroCAD, HydroFlow, PondPack, or TR20. This makes a flow routing design with ChamberMaxx just as simple as an above-ground pond design. #### Installation ChamberMaxx retention systems require adherence to the installation procedure for the structural integrity of the system to be maintained. Full installation instructions are available at www.contechstormwater.com, or contact your local CONTECH representative. ChamberMaxx systems include chambers, fabricated header/manifold components, scour protection netting, inspection port materials, and C-40 NW geotextile material. Typical Installation Sequence: - 1. Excavate and prepare - 2. Install pre-treatment system - 3. Prepare foundation & bedding - 4. Set header pipe/manifold system - Place scour protection netting underneath all chambers with inlet pipes - 6. Set Start, Mid and End chambers into place by hand - 7. Connect header and other required inlet and outlet piping - 8. Place geotextile fabrics - 9. Backfill and complete #### Maintenance Each chamber is manufactured with inspection portals. Location of inspection portals to be specified by the project design Engineer. It is recommend that the system is inspected annually and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities rather than the size or configuration of the system. For more details please refer to the ChamberMaxx operations and maintenance guideline at www.contechstormwater.com or contact your local CONTECH representative. ©2008 CONTECH Construction Products Inc. 800.338.1122 www.contech-cpi.com CONTECH Construction Products Inc. is your single source for hassle-free specifying and purchasing of comprehensive site solutions. For more information logon to www.contech-cpi.com or call 800.338.1122. CONTECH Construction Products Inc. Provider of: Bridge Dielinge, Erosia Retaining W Soil Stabil 2 minwater Solution The product(s) described may be protected by one of the following US; 5,79 (2) 15; 5,788,848; 5,985,157; 6,027,639; 6,350,377 (06,218; 6,647,720,7,186,058; 7,296,692, 7,297,265; related for an options or other patents of ChamberMaxx and DYODS are trademarks of CONTECH Construction Proc Copyright @2008 - All rights reserved. 29; 5,624,576; 5 ChamberMaxx-Rev2 7M 12/08 MC # MaxWell™ Plus DRAINAGE SYSTEM Product Information and De #### INDUSTRY SERVICES #### Site Drainage Systems Stormwater Drywells French Drains Piping Drainage Appurtenances Pump Sustems #### Technical Analysis Design Review Percolation Testing Geologic Database ADEQ Drywell Registration #### Recharge Systems Municipal/Private Recharge Wells Injection Wells & Galleries #### **Environmental Applications** Pattern Drilling/Soil Remediation Drainage Rehabilitation Drywell Abandonments OSHA HAZMAT-Certified #### Drainage Renovation Problem Assessment Site Redesign/Modification System Retrofit #### Drainage Maintenance Preventive Maintenanc Service Contracts Drywell Cleaning #### TORRENT RESOURCES INCORPORATED 1509 East Elwood Street Phoenix Arizona 85040-139 phone 602-268-0785 fax 602-268-0820 661-947-9836 Nevada 702-366-1234 #### www.TorrentResources.com AZ Lic. ROCO70465 A, ROCO47067 B-4; ADWR 363 CA Lic. 528080 A, C-42, HAZ NV Lic. 0035350 A An evolution of McGuckin Drilling The *MaxWell**** *Plus*, as manufactured and installed exclusively by Torrent Resources Incorporated, is the industry standard for draining large paved surfaces, nuisance water and other demanding applications. This patented system incorporates state-of-the-art pre-treatment technology. #### THE ULTIMATE IN DESIGN Since 1974, over 40,000 MaxWell³⁶ Systems have proven their value as a cost-effective solution in a wide variety of drainage applications. They are accepted by state and municipal agencies and are a standard detail in numerous drainage manuals. Many municipalities have recognized the inherent benefits of the MaxWell Plus and now require it for drainage of all paved surfaces. #### SUPERIOR PRE-TREATMENT Industry research, together with Torrent Resource's own experience, has shown that initial storm drainage flows have the greatest impact on system performance. This "first flush" occurs during the first few minutes of runoff and carries the majority of sediment and debris. Larger paved surfaces or connecting pipes from catch basins, underground storage, etc. can also generate high peak flows which may strain system function. In addition, nuisance water flows require controlled processing separate from normal storm runoff demands. Manufactured and Installed Exclusively by Torrent Resources Incorporated Please see reverse side for additional information U.S. Patent No. 4,923,330 ™ Trademark 1974, 1987, 2004 In the *MaxWell Plus*, preliminary treatment is provided through collection and separation in deep large-volume settling chambers. The standard MaxWell Plus system has over 2,500 gallons of capacity to contain sediment and debris carried by incoming water. Floating trash, paper, pavement oil, etc. is effectively stopped by the *PureFlo™ Debris Shields* in each chamber. These shielding devices are equipped with an effective screen to filter suspended material and are vented to prevent siphoning of floating surface debris as the system drains. #### EFFECTIVE PROCESSING Incoming water from the surface grated inlets or connecting pipes is received in the Primary Settling Chamber where silt and other heavy particles settle to the bottom. A PureFlo™ Debris Shield ensures containment by trapping floating debris and pavement oil. The pre-treated flow is then regulated to a design rate of up to 0.25cfs and directed to a secondary settling chamber. The settling and containment process is repeated, thereby effectively achieving controlled, uniform treatment. The system is drained as water rises under the PureFlo Debris Shield and spills into the top of the overflow pipe. The drainage assembly returns the cleaned water to the surrounding soil through the FloFast™ Drainage Screen. #### ABSORBENT TECHNOLOGY To provide prompt removal of pavement oils, both *MaxWell Plus* settling chambers are equipped with absorbent sponges. These floating pillow-like devices are 100% water repellent and literally wick petrochemical compounds from the water. Each sponge has a capacity of over 128 ounces to accommodate effective, long-term treatment. The absorbent is completely inert and will safely remove runoff constituents down to rainbow sheens which are typically no more than one molecule thick. #### SECURITY FEATURES MaxWell Plus Systems include bolted, theft-resistance, cast iron gratings and covers as standard security features. Special inset castings which are resistant to loosening from accidental impact are available for use in landscaped applications. Machined mating surfaces and "Storm Water Only" wording are standard. #### THE MAXWELL FIVE-YEAR WARRANTY Innovative engineering, quality materials and exacting construction are standard with every MaxWell system produced and installed by Torrent Resources Incorporated. The MaxWell Drainage Systems Warranty is the best in the industry and guarantees against failures due to workmanship or materials for a period of five years from date of completion. #### MAXWELL™ PLUS DRAINAGE SYSTEM DETAIL AND SPECIFICATIONS #### CALCULATING MAXWELL PLUS REQUIREMENTS: The type of property, soil permeability, rainfall intensity and local drainage ordinances determine the number and design of MaxWell Systems. For general applications draining retained storm water, use one standard MaxWell Plus per the instructions below for up to 5 acres of landscaped contributory area, and up to 2 acres of paved surface. To drain nuisance water flows in storm runoff systems, add a remote inlet to the System. For smaller drainage needs, refer to our Type IV MaxWell.
For industrial drainage, our Envibro" System may be recommended. For additional considerations, please refer to "Design Suggestions For Retention And Drainage Systems" or consult our Design Staff. #### COMPLETING THE MAXWELL PLUS DRAWING To apply the MaxWell Plus drawing to your specific project, simply fill in the blue boxes per the following instructions. For assistance, please consult our Design Staff. #### PRIMARY SETTLING CHAMBER DEPTH The overall depth of the Primary Settling Chamber is determined by the amount of surface area being drained. Use a standard depth of 10 feet for the initial acre of contributory drainage area, plus 2 feet for each additional acre, up to the design limits of the property type noted in "Calculating MaxWell Plus Requirements" noted above. Other conditions that would require increased chamber depths are property usage, maintenance scheduling, and severe or unusual service conditions. Connecting Pipe Depth may dictate deeper chambers so as to maintain the effectiveness of the settling process. #### ESTIMATED TOTAL DEPTH The Estimated Total Depth is the approximate total system depth required to achieve 10 continuous feet of penetration into permeable soils, based upon known soil information. Torrent's specialized "crowd" equipped rigs get through the difficult cemented soils to reach clean drainage soils at depths up to 180 feet and their extensive drilling log database is available to use as a reference. #### SETTLING CHAMBER DEPTH On MaxWell Plus Systems of over 30 feet overall depth and up to 0.25cfs design rate, the standard Settling Chamber Depth is 18 feet. #### OVERFLOW HEIGHT The Overflow Height and Settling Chamber Depth determine the effectiveness of the settling process. The higher the overflow pipe, the deeper the chamber, the greater the settling capacity. An overflow height of 13 feet is used with the standard settling chamber depth of 18 feet. #### O DRAINAGE PIPE This dimension also applies to the *PureFlo™* Debris Shields, the *FloFast™* Drainage Screen, and fittings. The size is based upon system design rates, multiple primary settling chambers, soil conditions, and need for adequate venting. Choices are 6", 8", or 12" diameter. Refer to our company's "Design Suggestions for Retention and Drainage Systems" for recommendations on which size best matches your application. #### BOLTED RING & GRATE/COVER Standard models are quality cast iron and available to fit 24" Ø or 30" Ø manhole openings. All units are bolted in two locations with wording "Storm Water Only" in raised letters. For other surface treatments, please refer to "Design Suggestions for Retention and Drainage Systems." #### INLET PIPE INVERT Pipes up to 24" in diameter from catch basins, underground storage, etc. may be connected into the primary settling chamber. Inverts deeper than 4 feet will require additional depth in both system settling chambers to maintain respective effective settling capacities. #### INTAKE INLET HEIGHT The Intake Inlet Height determines the effectiveness of the settling process in the Primary Settling Chamber. A minimum inlet height of 6 feet is used with the standard primary settling chamber depth of 10 feet. Greater inlet heights would be required with increased system demands as noted in Primary Settling Chamber Depth. #### CHAMBER SEPARATION The standard separation between chambers is 15 feet from center to center for inlet pipe inverts up to 7 feet. For deep inlet pipes or underground storage systems that result in a deeper Connector Pipe, add 5 feet of separation for each 3 feet of additional Connector Pipe depth. Maximum Connector Pipe depths and Chamber separations are 13 feet and 25 feet, respectively. A pump and lift station is recommended for systems with deeper requirements. - Only" in raised letters. Bolted in 2 locations and secured to cone with mortar. Rim elevation - 4. Graded Basin or Paving (by Others) - 5. Compacted Base Material (by Others) - 6. PureFlo® Debris Shield Rolled 16 Ga. steel X 24" length with vented anti-siphon and internal 265" Max. SWO flattened expanded steel screen X 12" length, Fusion bonded - 7. Pre-cast Liner 4000 PSI concrete 48" ID. X 54" OD. Center in hole and align sections to maximize bearing surface. - 8. Min. 6' Ø Drilled Shaft. - 9. Support Bracket Formed 12 Ga. steel. Fusion bonded epoxy coated, - 10. Overflow Pipe Sch. 40 PVC mated to drainage pipe at base seal. - 11. Drainage Pipe ADS highway grade with TRI-A coupler. Suspend pipe during backfill operations to prevent buckling or breakage. Diameter as noted - 12. Base Seal Geotextile, poly liner or concrete slurry - 13. Rock Clean and washed, sized between 3/8" and 1-1/2" to best complement soil conditions. - 14. FloFast¹⁴ Drainage Screen Sch. 40 PVC 0.120" slotted well screen with 32 slots per row/ft. 96" overall length with TRI-B coupler - 15. Min. 4' Ø Shaft Drilled to maintain permeability of drainage soils. - 16. Fabric Seal U.V. Resistant Geotextile To be removed by customer at project completion. - 17. Absorbent Hydrophobic Petrochemical Sponge, Min. 128 oz. capacity - 18. Connector Pipe 4" Ø Sch. 40 PVC. - 19. Vented Anti-Siphon intake with flow regulator. - 20. Intake Screen Sch. 40 PVC 0.120" modified slotted well screen with 32 slots per row/ft. 48" overall length with IRI-C end can - 21. Freeboard Depth Varies with inlet pipe elevation. Increase primary/secondary settling chamber depths as needed to maintain all inlet pipe elevations above connector - 22. Optional Inlet Pipe (by Others). - 23. Moisture Membrane 6 mil. Plastic. Place securely against eccentric cone and hole sidewall. Used in lieu of slurry in landscaped areas. ## MaxWell Drainage systems TORRENT RESOURCES INCORPORATED AZ LIC. RUCD70455 A, RUCD47057 B-4; ADWR 363 CA LIC. 528000 A, C-42, HAZ - NY LIC. BO35350 A - HM LIC. 90504 GF04 1509 East Elwood Street Phoenix Arizona 05040-1391 phone 602-268-0785 fax 602-268-0820 www.TorrentResources.com An evolution of McGuckin Drilling California 651-947-9836 Hevada 702-366-1234 #### IMPORTANT MAINTENANCE DATA AND WARRANTY INFORMATION This property is equipped with the finest on-site drainage system ever designed. With regular inspection and maintenance, it will last for many years. The reverse of this sheet has an illustration that shows just how the standard <code>MaxWell</code> works to trap silt and trash, and dispose of surplus surface water. #### MAINTENANCE Once each year, and after every major storm, you can check the debris level in your MaxWell settling chamber by dropping a weighted tape measure through the surface grate. On MaxWell Plus systems, the primary settling chamber can be checked the same way. When the measurement to the bottom of the chamber is less than specified under "cleanout depth," or if the floating absorbent pillow is submerged, the *MaxWell* should be serviced. MaxWell drainage systems are designed to efficiently dispose of retained stormwater. Drainage time is normally dependent upon site design, user convenience or rainfall intensity. If drainage appears slow, or if water is standing for more than 36 hours, the system should be inspected. For your convenience, Torrent Resources offers a complete Maintenance Program including Service Maintenance Agreements. Please call us for information on this valuable service. | PROJECT | DATE INSTALLED | |---------|----------------| | ADDRESS | | | | | | | | | MAXWELL II | HAXWELL TYPE | COMPONENT SIZE | TUTAL | SETTLING CHAMDER DEPTH | CLEANOUT DEPTH
SETTLING CHAMBER | |------------|--------------|----------------|-------|------------------------|------------------------------------| , | #### Design Considerations - Tributary Area - Area Required - Hydraulic Head #### Description Dry extended detention ponds (a.k.a. dry ponds, extended detention basins, detention ponds, extended detention ponds) are basins whose outlets have been designed to detain the stormwater runoff from a water quality design storm for some minimum time (e.g., 48 hours) to allow particles and associated pollutants to settle. Unlike wet ponds, these facilities do not have a large permanent pool. They can also be used to provide flood control by including additional flood detention storage. #### California Experience Caltrans constructed and monitored 5 extended detention basins in southern California with design drain times of 72 hours. Four of the basins were earthen, less costly and had substantially better load reduction because of infiltration that occurred, than the concrete basin. The Caltrans study reaffirmed the flexibility and performance of this conventional technology. The small headloss and few siting constraints suggest that these devices are one of the most applicable technologies for stormwater treatment. #### Advantages - Due to the simplicity of design, extended detention basins are relatively easy and inexpensive to construct and operate. - Extended detention basins can provide substantial capture of sediment and the toxics fraction associated with particulates. - Widespread application with sufficient capture volume can provide significant control of channel erosion and enlargement caused by changes to flow frequency #### Targeted Constituents | V | Sediment | A | |--------------|----------------|---| | V | Nutrients | | | V | Trash | 1 | | V | Metals | 1 | | \checkmark | Bacteria | 2 | | V | Oil and Grease | 2 | #### Legend (Removal Effectiveness) |) | Low | High | |---|-----|------| | | | | ▲ Medium Organics relationships resulting from the increase of impervious cover in a watershed. #### Limitations - Limitation of the diameter of the orifice may not allow use of extended detention in watersheds of less than 5 acres (would require an orifice with a diameter of less than 0.5 inches that would be prone to clogging). - Dry extended detention ponds have only moderate pollutant removal when compared
to some other structural stormwater practices, and they are relatively ineffective at removing soluble pollutants. - Although wet ponds can increase property values, dry ponds can actually detract from the value of a home due to the adverse aesthetics of dry, bare areas and inlet and outlet structures. #### Design and Sizing Guidelines - Capture volume determined by local requirements or sized to treat 85% of the annual runoff volume. - Outlet designed to discharge the capture volume over a period of hours. - Length to width ratio of at least 1.5:1 where feasible. - Basin depths optimally range from 2 to 5 feet. - Include energy dissipation in the inlet design to reduce resuspension of accumulated sediment. - A maintenance ramp and perimeter access should be included in the design to facilitate access to the basin for maintenance activities and for vector surveillance and control. - Use a draw down time of 48 hours in most areas of California. Draw down times in excess of 48 hours may result in vector breeding, and should be used only after coordination with local vector control authorities. Draw down times of less than 48 hours should be limited to BMP drainage areas with coarse soils that readily settle and to watersheds where warming may be determined to downstream fisheries. #### Construction/Inspection Considerations - Inspect facility after first large to storm to determine whether the desired residence time has been achieved. - When constructed with small tributary area, orifice sizing is critical and inspection should verify that flow through additional openings such as bolt holes does not occur. #### Performance One objective of stormwater management practices can be to reduce the flood hazard associated with large storm events by reducing the peak flow associated with these storms. Dry extended detention basins can easily be designed for flood control, and this is actually the primary purpose of most detention ponds. Dry extended detention basins provide moderate pollutant removal, provided that the recommended design features are incorporated. Although they can be effective at removing some pollutants through settling, they are less effective at removing soluble pollutants because of the absence of a permanent pool. Several studies are available on the effectiveness of dry extended detention ponds including one recently concluded by Caltrans (2002). The load reduction is greater than the concentration reduction because of the substantial infiltration that occurs. Although the infiltration of stormwater is clearly beneficial to surface receiving waters, there is the potential for groundwater contamination. Previous research on the effects of incidental infiltration on groundwater quality indicated that the risk of contamination is minimal. There were substantial differences in the amount of infiltration that were observed in the earthen basins during the Caltrans study. On average, approximately 40 percent of the runoff entering the unlined basins infiltrated and was not discharged. The percentage ranged from a high of about 60 percent to a low of only about 8 percent for the different facilities. Climatic conditions and local water table elevation are likely the principal causes of this difference. The least infiltration occurred at a site located on the coast where humidity is higher and the basin invert is within a few meters of sea level. Conversely, the most infiltration occurred at a facility located well inland in Los Angeles County where the climate is much warmer and the humidity is less, resulting in lower soil moisture content in the basin floor at the beginning of storms. Vegetated detention basins appear to have greater pollutant removal than concrete basins. In the Caltrans study, the concrete basin exported sediment and associated pollutants during a number of storms. Export was not as common in the earthen basins, where the vegetation appeared to help stabilize the retained sediment. #### Siting Criteria Dry extended detention ponds are among the most widely applicable stormwater management practices and are especially useful in retrofit situations where their low hydraulic head requirements allow them to be sited within the constraints of the existing storm drain system. In addition, many communities have detention basins designed for flood control. It is possible to modify these facilities to incorporate features that provide water quality treatment and/or channel protection. Although dry extended detention ponds can be applied rather broadly, designers need to ensure that they are feasible at the site in question. This section provides basic guidelines for siting dry extended detention ponds. In general, dry extended detention ponds should be used on sites with a minimum area of 5 acres. With this size catchment area, the orifice size can be on the order of 0.5 inches. On smaller sites, it can be challenging to provide channel or water quality control because the orifice diameter at the outlet needed to control relatively small storms becomes very small and thus prone to elogging. In addition, it is generally more cost-effective to control larger drainage areas due to the economies of scale. Extended detention basins can be used with almost all soils and geology, with minor design adjustments for regions of rapidly percolating soils such as sand. In these areas, extended detention ponds may need an impermeable liner to prevent ground water contamination. ### **Extended Detention Basin** The base of the extended detention facility should not intersect the water table. A permanently wet bottom may become a mosquito breeding ground. Research in Southwest Florida (Santana et al., 1994) demonstrated that intermittently flooded systems, such as dry extended detention ponds, produce more mosquitoes than other pond systems, particularly when the facilities remained wet for more than 3 days following heavy rainfall. A study in Prince George's County. Maryland, found that stormwater management practices can increase stream temperatures (Galli, 1990). Overall, dry extended detention ponds increased temperature by about 5°F. In cold water streams, dry ponds should be designed to detain stormwater for a relatively short time (i.e., 24 hours) to minimize the amount of warming that occurs in the basin. #### Additional Design Guidelines In order to enhance the effectiveness of extended detention basins, the dimensions of the basin must be sized appropriately. Merely providing the required storage volume will not ensure maximum constituent removal. By effectively configuring the basin, the designer will create a long flow path, promote the establishment of low velocities, and avoid having stagnant areas of the basin. To promote settling and to attain an appealing environment, the design of the basin should consider the length to width ratio, cross-sectional areas, basin slopes and pond configuration, and aesthetics (Young et al., 1996). Energy dissipation structures should be included for the basin inlet to prevent resuspension of accumulated sediment. The use of stilling basins for this purpose should be avoided because the standing water provides a breeding area for mosquitoes. Extended detention facilities should be sized to completely capture the water quality volume. A micropool is often recommended for inclusion in the design and one is shown in the schematic diagram. These small permanent pools greatly increase the potential for mosquito breeding and complicate maintenance activities; consequently, they are not recommended for use in California. A large aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W) where feasible. Basin depths optimally range from 2 to 5 feet. The facility's drawdown time should be regulated by an orifice or weir. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outlet design implemented by Caltrans in the facilities constructed in San Diego County used an outlet riser with orifices Figure 1 Example of Extended Detention Outlet Structure sized to discharge the water quality volume, and the riser overflow height was set to the design storm elevation. A stainless steel screen was placed around the outlet riser to ensure that the orifices would not become clogged with debris. Sites either used a separate riser or broad crested weir for overflow of runoff for the 25 and greater year storms. A picture of a typical outlet is presented in Figure 1. The outflow structure should be sized to allow for complete drawdown of the water quality volume in 72 hours. No more than 50% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure can be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. #### Summary of Design Recommendations (1) Facility Sizing - The required water quality volume is determined by local regulations or the basin should be sized to capture and treat 85% of the annual runoff volume. See Section 5.5.1 of the handbook for a discussion of volume-based design. Basin Configuration – A high aspect ratio may improve the performance of detention basins; consequently, the outlets should be placed to maximize the flowpath through the facility. The ratio of flowpath length to width from the inlet to the outlet should be at least 1.5:1 (L:W). The flowpath length is defined as the distance from the inlet to the outlet as measured at the surface. The width is defined as the mean width of the basin. Basin depths optimally range from 2 to 5 feet. The basin may include a sediment forebay to provide the opportunity for larger particles to settle out. A micropool should not
be incorporated in the design because of vector concerns. For online facilities, the principal and emergency spillways must be sized to provide 1.0 foot of freeboard during the 25-year event and to safely pass the flow from 100-year storm. - (2) Pond Side Slopes Side slopes of the pond should be 3:1 (H:V) or flatter for grass stabilized slopes. Slopes steeper than 3:1 (H:V) must be stabilized with an appropriate slope stabilization practice. - (3) Basin Lining Basins must be constructed to prevent possible contamination of groundwater below the facility. - (4) Basin Inlet Energy dissipation is required at the basin inlet to reduce resuspension of accumulated sediment and to reduce the tendency for short-circuiting. - (5) Outflow Structure The facility's drawdown time should be regulated by a gate valve or orifice plate. In general, the outflow structure should have a trash rack or other acceptable means of preventing clogging at the entrance to the outflow pipes. The outflow structure should be sized to allow for complete drawdown of the water quality volume in 72 hours. No more than 50% of the water quality volume should drain from the facility within the first 24 hours. The outflow structure should be fitted with a valve so that discharge from the basin can be halted in case of an accidental spill in the watershed. This same valve also can be used to regulate the rate of discharge from the basin. The discharge through a control orifice is calculated from: $Q = CA(2g(H-H_0))^{0.5}$ where: Q = discharge (ft³/s) C = orifice coefficient $A = area of the orifice (ft^2)$ g = gravitational constant (32.2) H = water surface elevation (ft) H₀= orifice elevation (ft) Recommended values for C are 0.66 for thin materials and 0.80 when the material is thicker than the orifice diameter. This equation can be implemented in spreadsheet form with the pond stage/volume relationship to calculate drain time. To do this, use the initial height of the water above the orifice for the water quality volume. Calculate the discharge and assume that it remains constant for approximately 10 minutes. Based on that discharge, estimate the total discharge during that interval and the new elevation based on the stage volume relationship. Continue to iterate until H is approximately equal to H_0 . When using multiple orifices the discharge from each is summed. - (6) Splitter Box When the pond is designed as an offline facility, a splitter structure is used to isolate the water quality volume. The splitter box, or other flow diverting approach, should be designed to convey the 25-year storm event while providing at least 1.0 foot of freeboard along pond side slopes. - (7) Erosion Protection at the Outfall For online facilities, special consideration should be given to the facility's outfall location. Flared pipe end sections that discharge at or near the stream invert are preferred. The channel immediately below the pond outfall should be modified to conform to natural dimensions, and lined with large stone riprap placed over filter cloth. Energy dissipation may be required to reduce flow velocities from the primary spillway to non-erosive velocities. - (8) Safety Considerations Safety is provided either by fencing of the facility or by managing the contours of the pond to eliminate dropoffs and other hazards. Earthen side slopes should not exceed 3:1 (H:V) and should terminate on a flat safety bench area. Landscaping can be used to impede access to the facility. The primary spillway opening must not permit access by small children. Outfall pipes above 48 inches in diameter should be fenced. #### Maintenance Routine maintenance activity is often thought to consist mostly of sediment and trash and debris removal; however, these activities often constitute only a small fraction of the maintenance hours. During a recent study by Caltrans, 72 hours of maintenance was performed annually, but only a little over 7 hours was spent on sediment and trash removal. The largest recurring activity was vegetation management, routine mowing. The largest absolute number of hours was associated with vector control because of mosquito breeding that occurred in the stilling basins (example of standing water to be avoided) installed as energy dissipaters. In most cases, basic housekeeping practices such as removal of debris accumulations and vegetation management to ensure that the basin dewaters completely in 48-72 hours is sufficient to prevent creating mosquito and other vector habitats. Consequently, maintenance costs should be estimated based primarily on the mowing frequency and the time required. Mowing should be done at least annually to avoid establishment of woody vegetation, but may need to be performed much more frequently if aesthetics are an important consideration. Typical activities and frequencies include: - Schedule semiannual inspection for the beginning and end of the wet season for standing water, slope stability, sediment accumulation, trash and debris, and presence of burrows. - Remove accumulated trash and debris in the basin and around the riser pipe during the semiannual inspections. The frequency of this activity may be altered to meet specific site conditions. - Trim vegetation at the beginning and end of the wet season and inspect monthly to prevent establishment of woody vegetation and for aesthetic and vector reasons. - Remove accumulated sediment and re-grade about every 10 years or when the accumulated sediment volume exceeds 10 percent of the basin volume. Inspect the basin each year for accumulated sediment volume. #### Cost #### Construction Cost The construction costs associated with extended detention basins vary considerably. One recent study evaluated the cost of all pond systems (Brown and Schueler, 1997). Adjusting for inflation, the cost of dry extended detention ponds can be estimated with the equation: $$C = 12.4 V_{0.760}$$ where: C = Construction, design, and permitting cost, and $V = Volume (ft^3).$ Using this equation, typical construction costs are: \$ 41,600 for a 1 acre-foot pond \$ 239,000 for a 10 acre-foot pond \$ 1,380,000 for a 100 acre-foot pond Interestingly, these costs are generally slightly higher than the predicted cost of wet ponds (according to Brown and Schueler, 1997) on a cost per total volume basis, which highlights the difficulty of developing reasonably accurate construction estimates. In addition, a typical facility constructed by Caltrans cost about \$160,000 with a capture volume of only 0.3 ac-ft. An economic concern associated with dry ponds is that they might detract slightly from the value of adjacent properties. One study found that dry ponds can actually detract from the perceived value of homes adjacent to a dry pond by between 3 and 10 percent (Emmerling-Dinovo, 1995). #### Maintenance Cost For ponds, the annual cost of routine maintenance is typically estimated at about 3 to 5 percent of the construction cost (EPA website). Alternatively, a community can estimate the cost of the maintenance activities outlined in the maintenance section. Table 1 presents the maintenance costs estimated by Caltrans based on their experience with five basins located in southern California. Again, it should be emphasized that the vast majority of hours are related to vegetation management (mowing). | Table 1 | Estimated Average Ann | timated Average Annual Maintenance Effort | | | |----------------|-----------------------|---|---------|--| | Activity | Labor Hours | Equipment &
Material (S) | Cost | | | Inspections | 4 | 7 | 183 | | | Maintenance | 49 | 126 | 2282 | | | Vector Control | O | O | O | | | Administration | 3 | O | 132 | | | Materials | - | 535 | 535 | | | Total | 56 | \$668 | \$3,132 | | #### References and Sources of Additional Information Brown, W., and T. Schueler. 1997. *The Economics of Stormwater BMPs in the Mid-Atlantic Region*. Prepared for Chesapeake Research Consortium. Edgewater, MD. Center for Watershed Protection. Ellicott City, MD. Denver Urban Drainage and Flood Control District. 1992. *Urban Storm Drainage Criteria Manual—Volume 3: Best Management Practices*. Denver, CO. Emmerling-Dinovo, C. 1995. Stormwater Detention Basins and Residential Locational Decisions. *Water Resources Bulletin 31*(3): 515–521 Galli. J. 1990. Thermal Impacts Associated with Urbanization and Stormwater Management Best Management Practices. Metropolitan Washington Council of Governments. Prepared for Maryland Department of the Environment, Baltimore, MD. GKY, 1989, Outlet Hydraulics of Extended Detention Facilities for the Northern Virginia Planning District Commission. MacRae, C. 1996. Experience from Morphological Research on Canadian Streams: Is Control of the Two-Year Frequency Runoff Event the Best Basis for Stream Channel Protection? In *Effects of Watershed Development and Management on Aquatic Ecosystems*. American Society of Civil Engineers. Edited by L. Roesner. Snowbird, UT. pp. 144–162. Maryland Dept of the Environment, 2000, Maryland Stormwater Design Manual: Volumes 1 & 2, prepared by MDE and Center for Watershed Protection. http://www.mde.state.md.us/environment/wma/stormwatermanual/index.html Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural BMPs. Stormwater 3(2): 24-39. Santana, F., J. Wood, R. Parsons, and S. Chamberlain. 1994. Control of Mosquito Breeding in Permitted Stormwater Systems. Prepared for Southwest Florida Water Management District, Brooksville, FL. Schueler, T. 1997. Influence of Ground Water on Performance of Stormwater Ponds in Florida. *Watershed Protection Techniques* 2(4):525–528. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washington, DC. Young, G.K., et
al., 1996, Evaluation and Management of Highway Runoff Water Quality, Publication No. FHWA-PD-96-032, U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning. #### Information Resources Center for Watershed Protection (CWP). Environmental Quality Resources, and Loiederman Associates. 1997. *Maryland Stormwater Design Manual*. Draft. Prepared for Maryland Department of the Environment, Baltimore, MD. Center for Watershed Protection (CWP). 1997. Stormwater BMP Design Supplement for Cold Climates. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC. U.S. Environmental Protection Agency (USEPA). 1993. *Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters*. EPA-840-B-92-002. U.S. Environmental Protection Agency. Office of Water, Washington, DC. ## **Extended Detention Basin** PLAN VIEW **PROFILE** Schematic of an Extended Detention Basin (MDE, 2000) #### Design Considerations - Soil for Infiltration - Tributary Area - Slope - Aesthetics - Environmental Side-effects #### Description The bioretention best management practice (EMP) functions as a soil and plant-based filtration device that removes pollutants through a variety of physical, biological, and chemical treatment processes. These facilities normally consist of a grass buffer strip, sand bed, ponding area, organic layer or mulch layer, planting soil, and plants. The runoff's velocity is reduced by passing over or through buffer strip and subsequently distributed evenly along a ponding area. Exfiltration of the stored water in the bioretention area planting soil into the underlying soils occurs over a period of days. #### California Experience None documented. Bioretention has been used as a stormwater EMP since 1992. In addition to Prince George's County, MD and Alexandria, VA, bioretention has been used successfully at urban and suburban areas in Montgomery County, MD; Baltimore County, MD; Chesterfield County, VA; Prince William County, VA; Smith Mountain Lake State Park, VA; and Cary, NC. #### Advantages - Bioretention provides stormwater treatment that enhances the quality of downstream water bodies by temporarily storing runoff in the BMP and releasing it over a period of four days to the receiving water (EPA, 1999). - The vegetation provides shade and wind breaks, absorbs noise, and improves an area's landscape. #### Limitations ■ The bioretention EMP is not recommended for areas with slopes greater than 20% or where mature tree removal would #### Targeted Constituents | V | Sediment | I | |--------------|----------------|---| | \checkmark | Nutrients | 4 | | V | Trasn | ē | | V | Metals | 1 | | V | Bacteria | 1 | | \checkmark | Oil and Grease | 0 | | V | Organios | 8 | #### Legend (Removal Effectiveness) - Low 🔳 High - ▲ Medium be required since clogging may result, particularly if the EMP receives runoff with high sediment loads (EPA, 1999). - Bioretention is not a suitable BMP at locations where the water table is within 6 feet of the ground surface and where the surrounding soil stratum is unstable. - By design, bioretention EMPs have the potential to create very attractive habitats for mosquitoes and other vectors because of highly organic, often heavily vegetated areas mixed with shallow water. - In cold climates the soil may freeze, preventing runoff from infiltrating into the planting soil. #### Design and Sizing Guidelines - The bioretention area should be sized to capture the design storm runoff. - In areas where the native soil permeability is less than 0.5 in/hr an underdrain should be provided. - Recommended minimum dimensions are 15 feet by 40 feet, although the preferred width is 25 feet. Excavated depth should be 4 feet. - Area should drain completely within 72 hours. - Approximately 1 tree or shrub per 50 ft² of bioretention area should be included. - Cover area with about 3 inches of mulch. #### Construction/Inspection Considerations Bioretention area should not be established until contributing watershed is stabilized. #### Performance Bioretention removes stormwater pollutants through physical and biological processes, including adsorption, filtration, plant uptake, microbial activity, decomposition, sedimentation and volatilization (EPA, 1999). Adsorption is the process whereby particulate pollutants attach to soil (e.g., clay) or vegetation surfaces. Adequate contact time between the surface and pollutant must be provided for in the design of the system for this removal process to occur. Thus, the infiltration rate of the soils must not exceed those specified in the design criteria or pollutant removal may decrease. Pollutants removed by adsorption include metals, phosphorus, and hydrocarbons. Filtration occurs as runoff passes through the bioretention area media, such as the sand bed, ground cover, and planting soil. Common particulates removed from stormwater include particulate organic matter, phosphorus, and suspended solids. Biological processes that occur in wetlands result in pollutant uptake by plants and microorganisms in the soil. Plant growth is sustained by the uptake of nutrients from the soils, with woody plants locking up these nutrients through the seasons. Microbial activity within the soil also contributes to the removal of nitrogen and organic matter. Nitrogen is removed by nitrifying and denitrifying bacteria, while aerobic bacteria are responsible for the decomposition of the organic matter. Microbial processes require oxygen and can result in depleted oxygen levels if the bioretention area is not adequately Bioretention TC-32 aerated. Sedimentation occurs in the swale or ponding area as the velocity slows and solids fall out of suspension. The removal effectiveness of bioretention has been studied during field and laboratory studies conducted by the University of Maryland (Davis et al, 1998). During these experiments, synthetic stormwater runoff was pumped through several laboratory and field bioretention areas to simulate typical storm events in Prince George's County, MD. Removal rates for heavy metals and nutrients are shown in Table 1. | Table 1 | Laboratory and Estimated
Bioretention Davis et al. (1998);
PGDER (1993) | | | |------------------------|---|--------------|--| | Pollutant | | Removal Rate | | | Total Phosphorus | | 70-83% | | | Metals (Cu, Zn, Pb) | | 93-98% | | | TKN | | 68-80% | | | Total Suspended Solids | | 90% | | | Organics | | 90% | | | Bacteria | | 90% | | Results for both the laboratory and field experiments were similar for each of the pollutants analyzed. Doubling or halving the influent pollutant levels had little effect on the effluent pollutants concentrations (Davis et al, 1998). The microbial activity and plant uptake occurring in the bioretention area will likely result in higher removal rates than those determined for infiltration EMPs. #### Siting Criteria Eioretention EMPs are generally used to treat stormwater from impervious surfaces at commercial, residential, and industrial areas (EPA, 1999). Implementation of bioretention for stormwater management is ideal for median strips, parking lot islands, and swales. Moreover, the runoff in these areas can be designed to either divert directly into the bioretention area or convey into the bioretention area by a curb and gutter collection system. The best location for bioretention areas is upland from inlets that receive sheet flow from graded areas and at areas that will be excavated (EPA, 1999). In order to maximize treatment effectiveness, the site must be graded in such a way that minimizes erosive conditions as sheet flow is conveyed to the treatment area. Locations where a bioretention area can be readily incorporated into the site plan without further environmental damage are preferred. Furthermore, to effectively minimize sediment loading in the treatment area, bioretention only should be used in stabilized drainage areas. #### Additional Design Guidelines The layout of the bioretention area is determined after site constraints such as location of utilities, underlying soils, existing vegetation, and drainage are considered (EPA, 1999). Sites with loamy sand soils are especially appropriate for bioretention because the excavated soil can be backfilled and used as the planting soil, thus eliminating the cost of importing planting soil. The use of bioretention may not be feasible given an unstable surrounding soil stratum, soils with clay content greater than 25 percent, a site with slopes greater than 20 percent, and/or a site with mature trees that would be removed during construction of the BMP. Bioretention can be designed to be off-line or on-line of the existing drainage system (EPA, 1999). The drainage area for a bioretention area should be between 0.1 and 0.4 hectares (0.25 and 1.0 acres). Larger drainage areas may require multiple bioretention areas. Furthermore, the maximum drainage area for a bioretention area is determined by the expected rainfall intensity and runoff rate. Stabilized areas may erode when velocities are greater than 5 feet per second (1.5 meter per second). The designer should determine the potential for erosive conditions at the site. The size of the bioretention area, which is a function of the drainage area and the runoff generated from the area is sized to capture the water quality volume. The recommended minimum dimensions of the bioretention area are 15 feet (4.6 meters) wide by 40 feet (12.2 meters) long, where the minimum width allows enough space for a dense, randomly-distributed area of trees and shrubs to become established. Thus replicating a natural forest and creating a microclimate, thereby enabling the bioretention area to tolerate the effects of heat stress, acid rain, runoff pollutants, and insect and disease infestations which landscaped areas in urban
settings typically are unable to tolerate. The preferred width is 25 feet (7.6 meters), with a length of twice the width. Essentially, any facilities wider than 20 feet (6.1 meters) should be twice as long as they are wide, which promotes the distribution of flow and decreases the chances of concentrated flow. In order to provide adequate storage and prevent water from standing for excessive periods of time the ponding depth of the bioretention area should not exceed 6 inches (15 centimeters). Water should not be left to stand for more than 72 hours. A restriction on the type of plants that can be used may be necessary due to some plants' water intolerance. Furthermore, if water is left standing for longer than 72 hours mosquitoes and other insects may start to breed. The appropriate planting soil should be backfilled into the excavated bioretention area. Planting soils should be sandy loam, loamy sand, or loam texture with a clay content ranging from 10 to 25 percent. Generally the soil should have infiltration rates greater than 0.5 inches (1.25 centimeters) per hour, which is typical of sandy loams, loamy sands, or loams. The pH of the soil should range between 5.5 and 6.5, where pollutants such as organic nitrogen and phosphorus can be adsorbed by the soil and microbial activity can flourish. Additional requirements for the planting soil include a 1.5 to 3 percent organic content and a maximum 500 ppm concentration of soluble salts. Bioretention TC-32 Soil tests should be performed for every 500 cubic yards (382 cubic meters) of planting soil, with the exception of pH and organic content tests, which are required only once per bioretention area (EPA, 1999). Planting soil should be 4 inches (10.1 centimeters) deeper than the bottom of the largest root ball and 4 feet (1.2 meters) altogether. This depth will provide adequate soil for the plants' root systems to become established, prevent plant damage due to severe wind, and provide adequate moisture capacity. Most sites will require excavation in order to obtain the recommended depth. Planting soil depths of greater than 4 feet (1.2 meters) may require additional construction practices such as shoring measures (EPA, 1999). Planting soil should be placed in 18 inches or greater lifts and lightly compacted until the desired depth is reached. Since high canopy trees may be destroyed during maintenance the bioretention area should be vegetated to resemble a terrestrial forest community ecosystem that is dominated by understory trees. Three species each of both trees and shrubs are recommended to be planted at a rate of 2500 trees and shrubs per hectare (1000 per acre). For instance, a 15 foot (4.6 meter) by 40 foot (12.2 meter) bioretention area (600 square feet or 55.75 square meters) would require 14 trees and shrubs. The shrub-to-tree ratio should be 2:1 to 3:1. Trees and shrubs should be planted when conditions are favorable. Vegetation should be watered at the end of each day for fourteen days following its planting. Plant species tolerant of pollutant loads and varying wet and dry conditions should be used in the bioretention area. The designer should assess aesthetics, site layout, and maintenance requirements when selecting plant species. Adjacent non-native invasive species should be identified and the designer should take measures, such as providing a soil breach to eliminate the threat of these species invading the bioretention area. Regional landscaping manuals should be consulted to ensure that the planting of the bioretention area meets the landscaping requirements established by the local authorities. The designers should evaluate the best placement of vegetation within the bioretention area. Plants should be placed at irregular intervals to replicate a natural forest. Trees should be placed on the perimeter of the area to provide shade and shelter from the wind. Trees and shrubs can be sheltered from damaging flows if they are placed away from the path of the incoming runoff. In cold climates, species that are more tolerant to cold winds, such as evergreens, should be placed in windier areas of the site. Following placement of the trees and shrubs, the ground cover and/or mulch should be established. Ground cover such as grasses or legumes can be planted at the beginning of the growing season. Mulch should be placed immediately after trees and shrubs are planted. Two to 3 inches (5 to 7.6 cm) of commercially-available fine shredded hardwood mulch or shredded hardwood chips should be applied to the bioretention area to protect from erosion. ## Maintenance The primary maintenance requirement for bioretention areas is that of inspection and repair or replacement of the treatment area's components. Generally, this involves nothing more than the routine periodic maintenance that is required of any landscaped area. Plants that are appropriate for the site, climatic, and watering conditions should be selected for use in the bioretention cell. Appropriately selected plants will aide in reducing fertilizer, pesticide, water, and overall maintenance requirements. Bioretention system components should blend over time through plant and root growth, organic decomposition, and the development of a natural soil horizon. These biologic and physical processes over time will lengthen the facility's life span and reduce the need for extensive maintenance. Routine maintenance should include a biannual health evaluation of the trees and shrubs and subsequent removal of any dead or diseased vegetation (EPA, 1999). Diseased vegetation should be treated as needed using preventative and low-toxic measures to the extent possible. EMPs have the potential to create very attractive habitats for mosquitoes and other vectors because of highly organic, often heavily vegetated areas mixed with shallow water. Routine inspections for areas of standing water within the EMP and corrective measures to restore proper infiltration rates are necessary to prevent creating mosquito and other vector habitat. In addition, bioretention EMPs are susceptible to invasion by aggressive plant species such as cattails, which increase the chances of water standing and subsequent vector production if not routinely maintained. In order to maintain the treatment area's appearance it may be necessary to prune and weed. Furthermore, mulch replacement is suggested when erosion is evident or when the site begins to look unattractive. Specifically, the entire area may require mulch replacement every two to three years, although spot mulching may be sufficient when there are random void areas. Mulch replacement should be done prior to the start of the wet season. New Jersey's Department of Environmental Protection states in their bioretention systems standards that accumulated sediment and debris removal (especially at the inflow point) will normally be the primary maintenance function. Other potential tasks include replacement of dead vegetation, soil pH regulation, erosion repair at inflow points, mulch replenishment, unclogging the underdrain, and repairing overflow structures. There is also the possibility that the cation exchange capacity of the soils in the cell will be significantly reduced over time. Depending on pollutant loads, soils may need to be replaced within 5-10 years of construction (LID, 2000). ## Cost ## Construction Cost Construction cost estimates for a bioretention area are slightly greater than those for the required landscaping for a new development (EPA, 1999). A general rule of thumb (Coffman, 1999) is that residential bioretention areas average about \$3 to \$4 per square foot, depending on soil conditions and the density and types of plants used. Commercial, industrial and institutional site costs can range between \$10 to \$40 per square foot, based on the need for control structures, curbing, storm drains and underdrains. Retrofitting a site typically costs more, averaging \$6,500 per bioretention area. The higher costs are attributed to the demolition of existing concrete, asphalt, and existing structures and the replacement of fill material with planting soil. The costs of retrofitting a commercial site in Maryland, Kettering Development, with 15 bioretention areas were estimated at \$111,600. In any bioretention area design, the cost of plants varies substantially and can account for a significant portion of the expenditures. While these cost estimates are slightly greater than those of typical landscaping treatment (due to the increased number of plantings, additional soil excavation, backfill material, use of underdrains etc.), those landscaping expenses that would be required regardless of the bioretention installation should be subtracted when determining the net cost. Bioretention TC-32 Perhaps of most importance, however, the cost savings compared to the use of traditional structural stormwater conveyance systems makes bioretention areas quite attractive financially. For example, the use of bioretention can decrease the cost required for constructing stormwater conveyance systems at a site. A medical office building in Maryland was able to reduce the amount of storm drain pipe that was needed from 800 to 230 feet - a cost savings of \$24,000 (PGDER, 1993). And a new residential development spent a total of approximately \$100,000 using bioretention cells on each lot instead of nearly \$400,000 for the traditional stormwater ponds that were originally planned (Rappahanock,). Also, in residential areas, stormwater management controls become a part of each property owner's landscape, reducing the public burden to maintain large centralized facilities. ## Maintenance Cost The operation and maintenance costs for a bioretention facility will be comparable to those of typical landscaping required for a site. Costs beyond the normal landscaping fees will include the cost for testing the soils and may include costs for a sand bed and planting soil. ## References and
Sources of Additional Information Coffman, L.S., R. Goo and R. Frederick, 1999: Low impact development: an innovative alternative approach to stormwater management. Proceedings of the 26th Annual Water Resources Planning and Management Conference ASCE, June 6-9, Tempe, Arizona. Davis, A.P., Shokouhian, M., Sharma, H. and Minami, C., "Laboratory Study of Biological Retention (Bioretention) for Urban Stormwater Management," *Water Environ. Res.*, 73(1), 5-14 (2001). Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., and Winogradoff, D. "Water Quality Improvement through Bioretention: Lead, Copper, and Zinc," *Water Environ. Res.*, accepted for publication, August 2002. Kim, H., Seagren, E.A., and Davis, A.P., "Engineered Bioretention for Removal of Nitrate from Stormwater Runoff," *WEFTEC 2000 Conference Proceedings on CDROM Research Symposium, Nitrogen Removal*, Session 19, Anaheim CA, October 2000. Hsieh, C.-h. and Davis, A.P. "Engineering Bioretention for Treatment of Urban Stormwater Runoff," *Watersheds* 2002, *Proceedings on CDROM Research Symposium*, Session 15, Ft. Lauderdale, FL, Feb. 2002. Prince George's County Department of Environmental Resources (PGDER), 1993. Design Manual for Use of *Bioretention in Stormwater Management*. Division of Environmental Management, Watershed Protection Branch. Landover, MD. U.S. EPA Office of Water, 1999. Stormwater Technology Fact Sheet: Bioretention. EPA 832-F-99-012. Weinstein, N. Davis, A.P. and Veeramachaneni, R. "Low Impact Development (LID) Stormwater Management Approach for the Control of Diffuse Pollution from Urban Roadways," 5th International Conference Diffuse/Nonpoint Pollution and Watershed Management Proceedings, C.S. Melching and Emre Alp, Eds. 2001 International Water Association Schematic of a Bioretention Facility (MDE, 2000) ## Design Considerations - Tributary Area - Area Required - Slope - Water Availability ## Description Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff flow to downstream discharge points. They are designed to treat runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or infiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of stormwater runoff. Vegetated swales can serve as part of a stormwater drainage system and can replace curbs, gutters and storm sewer systems. ## California Experience Caltrans constructed and monitored six vegetated swales in southern California. These swales were generally effective in reducing the volume and mass of pollutants in runoff. Even in the areas where the annual rainfall was only about 10 inches/yr, the vegetation did not require additional irrigation. One factor that strongly affected performance was the presence of large numbers of gophers at most of the sites. The gophers created earthen mounds, destroyed vegetation, and generally reduced the effectiveness of the controls for TSS reduction. ## Advantages If properly designed, vegetated, and operated, swales can serve as an aesthetic, potentially inexpensive urban development or roadway drainage conveyance measure with significant collateral water quality benefits. ## Targeted Constituents ✓ Sediment ✓ Nutrients ✓ Trash ✓ Metals ✓ Bacteria ✓ Oil and Grease ✓ Organics ## Legend (Removal Effectiveness) - Low High - ▲ Medium Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. ## Limitations - Can be difficult to avoid channelization. - May not be appropriate for industrial sites or locations where spills may occur - Grassed swales cannot treat a very large drainage area. Large areas may be divided and treated using multiple swales. - A thick vegetative cover is needed for these practices to function properly. - They are impractical in areas with steep topography. - They are not effective and may even erode when flow velocities are high, if the grass cover is not properly maintained. - In some places, their use is restricted by law: many local municipalities require curb and gutter systems in residential areas. - Swales are mores susceptible to failure if not properly maintained than other treatment EMPs. ## Design and Sizing Guidelines - Flow rate based design determined by local requirements or sized so that 85% of the annual runoff volume is discharged at less than the design rainfall intensity. - Swale should be designed so that the water level does not exceed 2/3rds the height of the grass or 4 inches, which ever is less, at the design treatment rate. - Longitudinal slopes should not exceed 2.5% - Trapezoidal channels are normally recommended but other configurations, such as parabolic, can also provide substantial water quality improvement and may be easier to mow than designs with sharp breaks in slope. - Swales constructed in cut are preferred, or in fill areas that are far enough from an adjacent slope to minimize the potential for gopher damage. Do not use side slopes constructed of fill, which are prone to structural damage by gophers and other burrowing animals. - A diverse selection of low growing, plants that thrive under the specific site, climatic, and watering conditions should be specified. Vegetation whose growing season corresponds to the wet season are preferred. Drought tolerant vegetation should be considered especially for swales that are not part of a regularly irrigated landscaped area. - The width of the swale should be determined using Manning's Equation using a value of 0.25 for Manning's n. ## Construction/Inspection Considerations - Include directions in the specifications for use of appropriate fertilizer and soil amendments based on soil properties determined through testing and compared to the needs of the vegetation requirements. - Install swales at the time of the year when there is a reasonable chance of successful establishment without irrigation; however, it is recognized that rainfall in a given year may not be sufficient and temporary irrigation may be used. - If sod tiles must be used, they should be placed so that there are no gaps between the tiles; stagger the ends of the tiles to prevent the formation of channels along the swale or strip. - Use a roller on the sod to ensure that no air pockets form between the sod and the soil. - Where seeds are used, erosion controls will be necessary to protect seeds for at least 75 days after the first rainfall of the season. ## Performance The literature suggests that vegetated swales represent a practical and potentially effective technique for controlling urban runoff quality. While limited quantitative performance data exists for vegetated swales, it is known that check dams, slight slopes, permeable soils, dense grass cover, increased contact time, and small storm events all contribute to successful pollutant removal by the swale system. Factors decreasing the effectiveness of swales include compacted soils, short runoff contact time, large storm events, frozen ground, short grass heights, steep slopes, and high runoff velocities and discharge rates. Conventional vegetated swale designs have achieved mixed results in removing particulate pollutants. A study performed by the Nationwide Urban Runoff Program (NURP) monitored three grass swales in the Washington, D.C., area and found no significant improvement in urban runoff quality for the pollutants analyzed. However, the weak performance of these swales was attributed to the high flow velocities in the swales, soil compaction, steep slopes, and short grass height. Another project in Durham, NC, monitored the performance of a carefully designed artificial swale that received runoff from a commercial parking lot. The project tracked 11 storms and concluded that particulate concentrations of heavy metals (Cu, Pb, Zn, and Cd) were reduced by approximately 50 percent. However, the swale proved largely ineffective for removing soluble nutrients. The effectiveness of vegetated swales can be enhanced by adding check dams at approximately 17 meter (50 foot) increments along their length (See Figure 1). These dams maximize the retention time within the swale, decrease flow velocities, and promote particulate settling. Finally, the incorporation of vegetated filter strips parallel to the top of the channel banks can help to treat sheet flows entering the swale. Only 9 studies have been conducted on all grassed channels designed for water quality (Table 1). The data suggest relatively high removal rates for some pollutants, but negative removals for some bacteria, and fair performance for phosphorus. | | Remo | valEi | ficien | cies (% | Removal) | | | |---|------|-------|--------|-----------------|----------|----------|-----------------| | Study | TSS | TP | TN | NO ₃ | Metals | Bacteria | Туре | | Caltrans 2002 | 77 | 8 | 67 | 66 | 83-90 | -33 | dry swales | | Goldberg 1993 | 67.8 | 4.5 | - | 31.4 | 42-62 | -100 | grassed channel | | Seattle Metro and Washington
Department of Ecology 1992 | 60 | 45 | 4 | -25 | 2-16 | -25 | grassed channel | | Seattle Metro and Washington
Department of Ecology, 1992 | 83 | 29 | - | -25 | 46-73 | -25 | grassed channel | | Wang et al., 1981 | 80 | - | | - | 70-80 | - | dry swale | | Dorman et al., 1989 | 98 | 18 | i. | 45 | 37-81 | - | dry swale | | Harper, 1988 | 87 | 83 | 84 | 80 | 88-90 | - | dry swale | | Kercher et al., 1983 | 99 | 99 | 99 | 99 | 99 | | dry swale | | Harper, 1988. | 81 | 17 | 40 | 52 | 37-69 | 0-1 | wet swale | | Koon, 1995 | 67 | 39 | - | 9 | -35 to 6 | - | wet swale | While it is difficult to distinguish between different designs based on the small amount of available data, grassed channels generally have poorer removal rates than wet and
dry swales, although some swales appear to export soluble phosphorus (Harper, 1988; Koon, 1995). It is not clear why swales export bacteria. One explanation is that bacteria thrive in the warm swale soils. ## Siting Criteria The suitability of a swale at a site will depend on land use, size of the area serviced, soil type, slope, imperviousness of the contributing watershed, and dimensions and slope of the swale system (Schueler et al., 1992). In general, swales can be used to serve areas of less than 10 acres, with slopes no greater than 5%. Use of natural topographic lows is encouraged and natural drainage courses should be regarded as significant local resources to be kept in use (Young et al., 1996). ## Selection Criteria (NCTCOG, 1993) - Comparable performance to wet basins - Limited to treating a few acres - Availability of water during dry periods to maintain vegetation - Sufficient available land area Research in the Austin area indicates that vegetated controls are effective at removing pollutants even when dormant. Therefore, irrigation is not required to maintain growth during dry periods, but may be necessary only to prevent the vegetation from dying. The topography of the site should permit the design of a channel with appropriate slope and cross-sectional area. Site topography may also dictate a need for additional structural controls. Recommendations for longitudinal slopes range between 2 and 6 percent. Flatter slopes can be used, if sufficient to provide adequate conveyance. Steep slopes increase flow velocity, decrease detention time, and may require energy dissipating and grade check. Steep slopes also can be managed using a series of check dams to terrace the swale and reduce the slope to within acceptable limits. The use of check dams with swales also promotes infiltration. ## Additional Design Guidelines Most of the design guidelines adopted for swale design specify a minimum hydraulic residence time of 9 minutes. This criterion is based on the results of a single study conducted in Seattle, Washington (Seattle Metro and Washington Department of Ecology, 1992), and is not well supported. Analysis of the data collected in that study indicates that pollutant removal at a residence time of 5 minutes was not significantly different, although there is more variability in that data. Therefore, additional research in the design criteria for swales is needed. Substantial pollutant removal has also been observed for vegetated controls designed solely for conveyance (Barrett et al, 1998); consequently, some flexibility in the design is warranted. Many design guidelines recommend that grass be frequently mowed to maintain dense coverage near the ground surface. Recent research (Colwell et al., 2000) has shown mowing frequency or grass height has little or no effect on pollutant removal. ## Summary of Design Recommendations - The swale should have a length that provides a minimum hydraulic residence time of at least 10 minutes. The maximum bottom width should not exceed 10 feet unless a dividing berm is provided. The depth of flow should not exceed 2/3rds the height of the grass at the peak of the water quality design storm intensity. The channel slope should not exceed 2.5%. - A design grass height of 6 inches is recommended. - Regardless of the recommended detention time, the swale should be not less than 100 feet in length. - 4) The width of the swale should be determined using Manning's Equation, at the peak of the design storm, using a Manning's n of 0.25. - 5) The swale can be sized as both a treatment facility for the design storm and as a conveyance system to pass the peak hydraulic flows of the 100-year storm if it is located "on-line." The side slopes should be no steeper than 3:1 (H:V). - Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. If flow is to be introduced through curb cuts, place pavement slightly above the elevation of the vegetated areas. Curb cuts should be at least 12 inches wide to prevent clogging. - Swales must be vegetated in order to provide adequate treatment of runoff. It is important to maximize water contact with vegetation and the soil surface. For general purposes, select fine, close-growing, water-resistant grasses. If possible, divert runoff (other than necessary irrigation) during the period of vegetation establishment. Where runoff diversion is not possible, cover graded and seeded areas with suitable erosion control materials. ### Maintenance The useful life of a vegetated swale system is directly proportional to its maintenance frequency. If properly designed and regularly maintained, vegetated swales can last indefinitely. The maintenance objectives for vegetated swale systems include keeping up the hydraulic and removal efficiency of the channel and maintaining a dense, healthy grass cover. Maintenance activities should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed from the channel and disposed in a local composting facility. Accumulated sediment should also be removed manually to avoid concentrated flows in the swale. The application of fertilizers and pesticides should be minimal. Another aspect of a good maintenance plan is repairing damaged areas within a channel. For example, if the channel develops ruts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be thick; if it is not, reseed as necessary. Any standing water removed during the maintenance operation must be disposed to a sanitary sewer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed in accordance with local or State requirements. Maintenance of grassed swales mostly involves maintenance of the grass or wetland plant cover. Typical maintenance activities are summarized below: - Inspect swales at least twice annually for erosion, damage to vegetation, and sediment and debris accumulation preferably at the end of the wet season to schedule summer maintenance and before major fall runoff to be sure the swale is ready for winter. However, additional inspection after periods of heavy runoff is desirable. The swale should be checked for debris and litter, and areas of sediment accumulation. - Grass height and mowing frequency may not have a large impact on pollutant removal. Consequently, mowing may only be necessary once or twice a year for safety or aesthetics or to suppress weeds and woody vegetation. - Trash tends to accumulate in swale areas, particularly along highways. The need for litter removal is determined through periodic inspection, but litter should always be removed prior to moving. - Sediment accumulating near culverts and in channels should be removed when it builds up to 75 mm (3 in.) at any spot, or covers vegetation. - Regularly inspect swales for pools of standing water. Swales can become a nuisance due to mosquito breeding in standing water if obstructions develop (e.g. debris accumulation, invasive vegetation) and/or if proper drainage slopes are not implemented and maintained. ## Cost ## Construction Cost Little data is available to estimate the difference in cost between various swale designs. One study (SWRPC, 1991) estimated the construction cost of grassed channels at approximately \$0.25 per ft². This price does not include design costs or contingencies. Brown and Schueler (1997) estimate these costs at approximately 32 percent of construction costs for most stormwater management practices. For swales, however, these costs would probably be significantly higher since the construction costs are so low compared with other practices. A more realistic estimate would be a total cost of approximately \$0.50 per ft², which compares favorably with other stormwater management practices. Swale Cost Estimate (SEWRPC, 1991) Table 2 | | | | | Unit Cost | | | Total Cost | | |---|--------------|--------|------------------|----------------|---------|---------|------------|----------| | Component | Unit | Extent | Low | Moderale | High | Low | Moderale | Hgh | | Mobilization /
Demobilization-Light | Swale | - | \$107 | \$274 | \$441 | \$107 | \$274 | \$441 | | Sito Proparation
Cloaring ⁵ | Acre | 0.5 | \$2,200 | \$3,800 | \$5,400 | \$1,100 | \$1,900 | \$2,700 | | Gandral | Acro | 0.25 | 009'13 | \$5,200 | 009'94 | 050\$ | \$1,300 | \$1,650 | | Excavalion ^d | rP. | 372 | 10.10 | 53.70 | \$5.30 | \$761 | \$1,376 | \$1,972 | | Lovel and Till* | thy | 1,210 | \$0.20 | \$0.35 | \$0.50 | \$242 | \$424 | \$605 | | Silos Development
Salvaged Topsoil | 3 | | | | | | | | | Seed, and Mulch" | € €
-< -< | 1,210 | \$0.40
\$1.20 | 57.99
57.99 | \$1.60 | 5484 | \$1,210 | \$1,936 | | Subtotal | : | ı | : | - | | \$5,116 | \$9,366 | \$13,660 | | Contingencies | Swalo | - | 25% | 25% | 25% | \$1,279 | \$2,347 | \$3,415 | | Total | : | 1 | 1 | 1 | : | \$6,395 | \$11,735 | \$17,075 | Note: Mobilization/demobilization refers to the organization and planning involved in establishing, a vegetative swale "Swale has a bottom width of 1.0 foot, a top width of 10 feet with 1:3 side slopes, and a 1,000-foot length. Area cleared = (top width + 10 feet) x swale length. *Area grubbed = (top width x swate tength). ⁴Volume excavated = (0.67 x top width x swale depth) x swale length (parabolic cross-section). * Area tilled = (top width + $8(swale depth^2)$ x swale length (parabolic cross-section) 3(top width) * Area seeded = area cleared x 0.5. ⁹ Area sodded = area cleared x 0.5. January 2003 ## Vegetated Swale Estimated Maintenance Costs (SEWRPC, 1991) Table 3 | | | Swal
(Depth and | Swale Size
(Depth and Top Width) | | |--
--|---|--|--| | Component | Unit Gost | 1.5 Foot Depth, One-
Foot Bottom Width,
10-Foot Top Width | 3-Foot Depth, 3-Foot
Bottom Width, 21-Foot
Top Width | Comment | | Lawn Mowing | \$0.85 / 1,000 ff/ movarig | 50.14 / linear foot | \$0.21 / linear foot | Lawn maintenance area=(top width + 10 feet) x langth. Mow oight times por year | | General Lawn Care | \$0.00 / 1,000 ft²/ year | S0.18 / linear foot | \$0.28 / linear foot | Lawn maintenance area = (top
width + 10 feet) x length | | Swale Debns and Litter
Removal | \$0.10 / Imear foot / year | 50.10 / Imear foot | \$0.10 / linear loot | F | | Grass Reseeding with
Mulch and Ferlilizer | \$0.307 yd² | SD 01 / Innearfoot | \$0.01 / linear loot | Area revegetated equals 1% of lawn maintenance area per year | | Program Administration and
Swale Inspection | \$0.15 / linear foot / year,
plus \$25 / inspection | S0.15 / linear foot | \$0.15 / linear foot | Inspect four times per year | | Total | | \$0.56 / linear foot | \$ 0.75 / linear foot | | | | | | | | 9 of 13 ## Maintenance Cost Caltrans (2002) estimated the expected annual maintenance cost for a swale with a tributary area of approximately 2 ha at approximately \$2,700. Since almost all maintenance consists of mowing, the cost is fundamentally a function of the mowing frequency. Unit costs developed by SEWRPC are shown in Table 3. In many cases vegetated channels would be used to convey runoff and would require periodic mowing as well, so there may be little additional cost for the water quality component. Since essentially all the activities are related to vegetation management, no special training is required for maintenance personnel. ## References and Sources of Additional Information Barrett, Michael E., Walsh, Patrick M., Malina, Joseph F., Jr., Charbeneau, Randall J, 1998, "Performance of vegetative controls for treating highway runoff," *ASCE Journal of Environmental Engineering*, Vol. 124, No. 11, pp. 1121-1128. Brown, W., and T. Schueler. 1997. *The Economics of Stormwater BMPs in the Mid-Atlantic Region*. Prepared for the Chesapeake Research Consortium, Edgewater, MD, by the Center for Watershed Protection, Ellicott City, MD. Center for Watershed Protection (CWP). 1996. Design of Stormwater Filtering Systems. Prepared for the Chesapeake Research Consortium, Solomons, MD, and USEPA Region V, Chicago, IL, by the Center for Watershed Protection, Ellicott City, MD. Colwell, Shanti R., Horner, Richard R., and Booth, Derek B., 2000. Characterization of Performance Predictors and Evaluation of Mowing Practices in Biofiltration Swales. Report to King County Land And Water Resources Division and others by Center for Urban Water Resources Management, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA Dorman, M.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. FHWA/RD 89/202. Federal Highway Administration, Washington, DC. Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattle Engineering Department, Seattle, WA. Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Prepared for Florida Department of Environmental Regulation, Tallahassee, FL, by Environmental Research and Design, Inc., Orlando, FL. Kercher, W.C., J.C. Landon, and R. Massarelli. 1983. Grassy swales prove cost-effective for water pollution control. *Public Works*, 16: 53–55. Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management, Seattle, WA, and Washington Department of Ecology, Olympia, WA. Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Structural EMPs. Stormwater 3(2): 24-39.Oakland, P.H. 1983. An evaluation of stormwater pollutant removal through grassed swale treatment. In Proceedings of the International Symposium of Urban Hydrology, Hydraulics and Sediment Control, Lexington, KY. pp. 173–182. Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments, Washington, DC, by the Occoquan Watershed Monitoring Laboratory, Manassas, VA. Pitt, R., and J. McLean. 1986. Toronto Area Watershed Management Strategy Study: Humber River Pilot Watershed Project. Ontario Ministry of Environment, Toronto, ON. Schueler, T. 1997. Comparative Pollutant Removal Capability of Urban EMPs: A reanalysis. Watershed Protection Techniques 2(2):379–383. Seattle Metro and Washington Department of Ecology. 1992. *Biofiltration Swale Performance: Recommendations and Design Considerations*. Publication No. 657. Water Pollution Control Department, Seattle, WA. Southeastern Wisconsin Regional Planning Commission (SWRPC). 1991. Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical report no. 31. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. U.S. EPA, 1999, Stormwater Fact Sheet: Vegetated Swales, Report # 832-F-99-006 http://www.epa.gov/owm/mtb/vegswale.pdf, Office of Water, Washington DC. Wang, T., D. Spyridakis, B. Mar, and R. Horner. 1981. Transport, Deposition and Control of Heavy Metals in Highway Runoff. FHWA-WA-RD-39-10. University of Washington, Department of Civil Engineering, Seattle, WA. Washington State Department of Transportation, 1995, *Highway Runoff Manual*, Washington State Department of Transportation, Olympia, Washington. Welborn, C., and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report No. 87-4004. U.S. Geological Survey, Reston, VA. Yousef, Y., M. Wanielista, H. Harper, D. Pearce, and R. Tolbert. 1985. *Best Management Practices: Removal of Highway Contaminants By Roadside Swales*. University of Central Florida and Florida Department of Transportation, Orlando, FL. Yu, S., S. Barnes, and V. Gerde. 1993. Testing of Best Management Practices for Controlling Highway Runoff. FHWA/VA-93-R16. Virginia Transportation Research Council, Charlottesville, VA. ## Information Resources Maryland Department of the Environment (MDE). 2000. Maryland Stormwater Design Manual. www.mde.state.md.us/environment/wma/stormwatermanual. Accessed May 22, 2001. Reeves, E. 1994. Performance and Condition of Biofilters in the Pacific Northwest. *Watershed Protection Techniques* 1(3):117–119. ## Vegetated Swale Seattle Metro and Washington Department of Ecology. 1992. *Biofiltration Swale Performance*. Recommendations and Design Considerations. Publication No. 657. Seattle Metro and Washington Department of Ecology, Olympia, WA. USEPA 1993. Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water. Washington, DC. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washington, DC, by the Watershed Management Institute, Ingleside, MD. ## 7.0 PUBLIC EDUCATION The educational materials included in this P-WQMP are provided to inform people involved in future uses, activities, or ownership of the site about the potential pitfalls associated with careless storm water management. "The Ocean Begins at Your Front Door" provides users with information about storm water that is/ will be generated on site, what happens when water enters a storm drain, and its ultimate fate, discharging into the ocean. Also included are activities guidelines, such as "Tips for Landscape & Gardening", to educate anyone who is or will be associated with activities that have a potential to impact storm water runoff quality. These guidelines generally provide a menu of BMPs to effectively reduce the generation of storm water runoff pollutants from a variety of activities. The educational materials to be used for the proposed project are included in Appendix 3 of this P-WQMP and are listed below. ## **BROCHURES** - The Ocean Begins at Your Front Door - Tips for Landscape & Gardening - Tips for Pool Maintenance - Waste Oil Collection Centers South OC - Keeping Pest Control Products Out of Creeks, Rivers and the Ocean - Permitted Lot & Pool Drains Pool Maintenance - Tips for Pet Care - Water Quality Guidelines for Car Wash Fund Raisers - Sewage Spill Reference Guide - Tips for Using Concrete and Mortar - Household Tips - Help Prevent Ocean Pollution: Proper Disposal of Household Hazardous Materials ## **BMP FACT SHEETS** - SC-10 Non-Stormwater Discharges - SC-11 Spill Prevention, Control and Cleanup - SC-41 Building and Grounds Maintenance - SC-43 Parking/Storage Area Maintenance - SC-70 Road and Street Maintenance - SC-71 Plaza and Sidewalk Cleaning - SC-72 Fountain & Pool Maintenance - SC-73 Landscape Maintenance - SC-74 Drainage System Maintenance - SD-10 Site Design & Landscape Planning - SD-11 Roof Runoff Controls - SD-12 Efficient Irrigation - SD-13 Storm Drain Signage - SD-32 Trash Storage Areas ## 8.0 APPENDICES | Appendix 1 | Runoff Coefficient References | |------------|---| | Appendix 2 | Notice of Transfer of Responsibility | | Appendix 3 | Public Education Materials | | Appendix 4 | Post-Construction BMP Fact Sheets | | Appendix 5 | Final Resolutions / Conditions of Approval (Pending – to be included in Final WQMP) | | Appendix 6 | Record of BMP Implementation, Maintenance, and
Inspection | ## **RUNOFF COEFFICIENT REFERENCES** ## RUNOFF COEFFICIENT REFERENCES Table A-1 C Values Based on Impervious/Pervious Area Ratios | % Impervious | % Pervious | С | |--------------|------------|------| | 0 | 100 | 0.15 | | 5 | 95 | 0.19 | | 10 | 90 | 0.23 | | 15 | 85 | 0.26 | | 20 | 80 | 0.30 | | 25 | 75 | 0.34 | | 30 | 70 | 0.38 | | 35 | 65 | 0.41 | | 40 | 60 | 0.45 | | 45 | 55 | 0.49 | | 50 | 50 | 0.53 | | 55 | 45 | 0.56 | | 60 | 40 | 0.60 | | 65 | 35 | 0.64 | | 70 | 30 | 0.68 | | 75 | 25 | 0.71 | | 80 | 20 | 0.75 | | 85 | 15 | 0.79 | | 90 | 10 | 0.83 | | 95 | 5 | 0.86 | | 100 | 0 | 0.90 | # Serrano Summit - Preliminary BMP Sizing Calculations 3/15/2010 ## Storm Water Quality Design Flow (SQDF) SQDV = C * I * A C = Runoff Coefficient depth = volume / area I = Rainfall Intensity I = volume / C * A * conversion conversion = (1/12)*(1/60)*(1/60)*(43560) | Treatment
Required
(cfs) | 1.77 | 1.99 | 1.83 | 8.05 | 1.40 | 0.09 | 3.94 | |--------------------------------|---------|-----------------|---------|----------------|--------------|--------------|----------| | Conversion
Factor | 1.00833 | 1.00833 | 1.00833 | 1.00833 | 1.00833 | 1.00833 | 1.00833 | | Drainage
Area (acres) | 13 | 14.6 | 13.4 | 59 | 9.21 | 2 | 28.89 | | Rainfall
Intensity
(in) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | Runoff
Coefficient | 0.68 | 0.68 | 0.68 | 0.68 | 0.75 | 0.23 | 0.68 | | % Impervious | %02 | %02 | %02 | %02 | 80% | 10% | %02 | | Drainage Area
Name | Lot 15 | CDS #2 / Lot 16 | CDS #3 | Total WQ Basin | Civic Center | Passive Park | Drywells | | Row# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ## Storm Water Quality Design Volume (SQDV) SQDV = C * I * A * (Conversion) depth = volume / area I = volume / C * A * conversion C = Runoff Coefficient I = Rainfall Intensity conversion = (1/12)*(43560) | Treatment
Required (ac-
ft) | 0.62 | 0.70 | 0.64 | 2.83 | 0.49 | 0.03 | 3.01 | |-----------------------------------|--------------|-----------------|----------|----------------|--------------|--------------|-----------| | Treatment
Required (ft³) | 27,135.4 | 30,475.2 | 27,970.4 | 123,153.1 | 21,355.7 | 1,398.1 | 131,320.6 | | Conversion
Factor | 3630 | 3630 | 3630 | 3630 | 3630 | 3631 | 3632 | | Drainage
Area (acres) | 13 | 14.6 | 13.4 | 59 | 9.21 | 2 | 28.89 | | Rainfall
Intensity
(in) | 0.85 | 0.85 | 98.0 | 0.85 | 98.0 | 98'0 | 1.85 | | Runoff
Coefficient | 89'0 | 0.68 | 89.0 | 0.68 | 0.75 | 0.23 | 0.68 | | % impervious | %02 | %02 | %02 | %02 | %08 | 10% | %02 | | BMP Name | Lot 15 | CDS #2 / Lot 16 | CDS #3 | Total WQ Basin | Civic Center | Passive Park | Drywells | | Row # | March Street | 2 | 3 | 4 | 5 | 9 | 1 | ## Water Quality Basin Sizing | Footprint @ 20% Contingency (SF) | 10,854.2 | 12,190.1 | 11,188.1 | 49,261.2 | 8,542.3 | 559.2 | 39,396.2 | |--|----------|-----------------|----------|----------------|--------------|--------------|-----------| | Footprint @ Footprint @ 20% 20% Contingency (acres) (SF) | 0.25 | 0.28 | 0.26 | 1.13 | 0.20 | 0.01 | 06.0 | | Volume @
20%
Contingency
(acre-ft) | 0.75 | 0.84 | 77.0 | 3.39 | 0.59 | 0.04 | 3.62 | | Original
Basin
Footprint (SF) | 9,045.1 | 10,158.4 | 9,323.5 | 41,051.0 | 7,118.6 | 466.0 | 32,830.2 | | Sizing
Depth (ft) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 4.0 | | Treatment
Volume
Required
(acre-ft) | 0.623 | 0.700 | 0.642 | 2.827 | 0.490 | 0.032 | 3.015 | | Treatment
Required (ft³) | 27,135.4 | 30,475.2 | 27,970.4 | 123,153.1 | 21,355.7 | 1,398.1 | 131,320.6 | | ВМР Nате | Lot 15 | CDS #2 / Lot 16 | CDS #3 | Total WQ Basin | Civic Center | Passive Park | Drywells | | Row# | | 2 | 3 | 4 | 5 | 9 | 7 | ## DYODSTM Design Your Own Detention System __ INSPECTION PORT HEADER PIPE PRE-TREATMENT SYSTEM **CHAMBERMaxx** and pricing send completed worksheet to: For design assistance, drawings, dyods@contech-cpi.com ## Lot 15 - Preliminary Sizing Only Project Summary Project Name: Designed By: City, State: Telephone: Company: County: Enter Information in INTEGRATED END WALL CHAMBER STANDARD OPEN CHAMBER EFFECTIVE DEPTH 1'-6" MIN COVER BACKFILL TO GRADE Blue Cells FINISHED GRADE ELEVATION PAVEMENT 5" MIN 27,135 5.00 Yes Chamber Invert Depth Below Asphalt (ft): Storage Volume Required (cf): Limiting Width (ft): ChamberMaxx Calculator Waterway Area (ft²) 10.78 Depth A: Porous Stone Above Chamber (in): Depth C: Porous Stone Below Chamber (in): Porous Stone Backfill Included For Storage: Use Custom Layout (at right) for layout adjustment Stone Porosity (0 to 40%): 350 Chambers Required Chambers: System Sizing Chamber Storage: 17,287 cf 10,337 cf 27,624 cf 67.4 ft x 185.4 ft Rectangular Footprint (W x L): Total Storage Provided: Porous Stone Storage: 20 9 8 17 16 To adjust layout, select the appropriate number of chambers in the light blue boxes below. 15 4 13 7 **Custom Layout** 10 11 Cells 6 8 9 Additional Units Required = 0 2 2 192 160 128 96 64 32 0 (ֈֈ) պճսթղ 101.8% of Req'd Storage | 超過 | Units: | |---------|--------| | terials | Middle | | H Mai | erMaxx | | ONTEC | Chambe | | O | | | ChamberMaxx Middle Units: | 322 | 322 Chambers @ 7'1" installed length | |---------------------------------|-----|--------------------------------------| | ChamberMaxx Start Units: | 14 | 14 Chambers @ 8' installed length | | ChamberMaxx End Units: | 4 | 14 Chambers @ 7'5" installed length | | Manifold Fittings (1 manifold): | 13 | 13 ea Tees and 1ea Elbow | | Scour Protection Netting: | 89 | 68 ft long x 7.5' wide | | Approximate Truckloads: | 2 | 2 Trucks | | periwaxx End Units: | 14 | 5
5 | |----------------------------|---------|--------| | old Fittings (1 manifold): | 13 | ea | | Protection Netting: | 68 | ij | | kimate Truckloads: | 2 | 2 Tru | | | | | | uction Quantities | | | | xcavation: | 2698 cy | ठ | | Backfill. | 057 01 | . ? | | Construction Quantities | | | |--------------------------------|------|-------------| | Total Excavation: | 2698 | 2698 cy (as | | Stone Backfill: | 957 | 957 cy sto | | Remaining Backfill To Asphalt: | 948 | 948 cy bac | | Non 10/2: | , | | ssumes 4" asphalt) | 948 cy backfill per specifications
1745 ev for for and eides of expandion | ייי של אין ייי אין אין אין אין אין אין אין אין | I should be verified upon final design | |--|--|---| | 94 | | are and | | Remaining Backfill To Asphalt:
Non-Woven Gentextile: | | Constituction Quantities are approximate and should be verified upon final design | ## DYC Design Yo INTEGRATED END WALL CHAMBER -EFFECTIVE DEPTH- | SYSTEM HEADER PIPE INSPECTION PORT | | STANDARD OPEN CHAMBER | PAVEMENT FINISHED GRADE ELEVATION BACKFILL TO GRADE | A BABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | RISE RISE RISE RISE RISE RISE RISE RISE | Additional Units Required = 0 Custom Lavout | To adjust layout, select the appropriate number of chambers in the light blue boxes below. 20 20 20 20 20 20 20 2 | - 160 T | 128 | | (11) | the state of s | 64- | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | | |--|--|---|---|--|--|--|--|---|-----|--|----------
--|----------|-------------------------|--|--|---|--| | DYODS TM Design Your Own Detention System CHAMBERMAXX** | For design assistance, drawings, and pricing send completed worksheet to: dyods@contech-cpi.com | Project Summary Date: Project Name: City, State: | County: Designed By: Company: Telephone: | | Storage Volume Required (cf): Chamber Invert Depth Below Asphalt (ft): Limiting Width (ft): Porous Stone Backfill Included For Storage: Depth A: Porous Stone Below Chamber (in): Depth C: Porous Stone Below Chamber (in): Stone Porosity (0 to 40%): | System Sizing Use Custom Layout (at right) for layout adjustment | 392
19,372 | Porous Stone Storage: 11,544 cf Total Storage Provided: 30,916 cf 101.4% of Req'd Storage Rectangular Footprint (W x L): 95.6 ff x 149.8 ff | | ChamberMaxx Middle I Inits: 352 Chambers @ 7'1" installed landth | 20 20 20 | old): 19 | 2 Trucks | Construction Quantities | Total Excavation: 3092 cy (assumes 4" asphalt) | Stone Backfill: 1069 cy stone Remaining Backfill To Asnhall: 1131 cy hackfill ner snerifications | 1962 sy for top | **Construction Quantities are approximate and should be verified upon final design | 19 19 19 20 19 8 ## DYODS TM Design Your Own Detention System ## **CHAMBERMaxx** INSPECTION PORT TEADER PIPE SYSTEM and pricing send completed worksheet to: For design assistance, drawings, dyods@contech-cpi.com ## Project Summary Project Name: Designed By: City, State: Telephone: Company: County: Enter Information in Civic Ctr - Preliminary Sizing Only INTEGRATED END WALL CHAMBER STANDARD OPEN CHAMBER EFFECTIVE DEPTH 1'-6" MIN COVER BACKFILL TO GRADE Blue Cells FINISHED GRADE ELEVATION **PAVEMENT** 5" MIN Waterway Area (ft²) 10.78 12,208 5.00 Depth C: Porous Stone Below Chamber (in): Depth A: Porous Stone Above Chamber (in): Porous Stone Backfill Included For Storage: Chamber Invert Depth Below Asphalt (ft): Storage Volume Required (cf): Limiting Width (ft): ChamberMaxx Calculator Use Custom Layout (at right) for layout adjustment Stone Porosity (0 to 40%): 156 Chambers 7,723 cf 4,808 cf 12,531 cf 67.4 ft x 92.9 ft Rectangular Footprint (W x L): Total Storage Provided: Porous Stone Storage: Required Chambers: System Sizing Chamber Storage: To adjust layout, select the appropriate number of chambers in the light blue boxes below. Custom Layout Additional Units Required = 0 96 64 32 Length (ft) 102.6% of Req'd Storage ## Chambers @ 7'1" installed length 128 14 Manifold Fittings (1 manifold): ChamberMaxx Middle Units: ChamberMaxx Start Units: ChamberMaxx End Units: Scour Protection Netting: Approximate Truckloads: CONTECH Materials Chambers @ 7'5" installed length Chambers @ 8' installed length 14 Chambers @ 7:5" installed 13 ea Tees and 1ea Elbow 68 ft long x 7.5' wide 1 Trucks cy (assumes 4" asphalt) 445 cy stone Construction Quantities Total Excavation: Stone Backfill: **Construction Quantities are approximate and should be verified upon final design Remaining Backfill To Asphalt: Non-Woven Geotextile: 903 sy for top and sides of excavation 544 cy backfill per specifications 20 19 48 11 16 15 14 13 12 10 11 Cells m 9 2 4 3 N 0 © 2007 CONTECH Stormwater Solutions ## NOTICE OF TRANSFER OF RESPONSIBILITY ## NOTICE OF TRANSFER OF RESPONSIBILITY ## WATER QUALITY MANAGEMENT PLAN Serrano Summit – City of Lake Forest Tract No. TBD Submission of this Notice Of Transfer of Responsibility constitutes notice to the City of Lake Forest that responsibility for the Water Quality Management Plan ("WQMP") for the subject property identified below, and implementation of that plan, is being transferred from the Previous Owner (and his/her agent) of the site (or a portion thereof) to the New Owner, as further described below. ## I. Previous Owner/ Previous Responsible Party Information | Company/ Individual Name: | | Contact Person: | | | | | | |--|---------------------|---|--------|--|--|--|--| | Street Address: | | Title: | | | | | | | City: | State: | ZIP: | Phone: | | | | | | II. <u>Information about Si</u> | te Transferred | | | | | | | | Name of Project (if applicable | ∍): | | | | | | | | Title of WQMP Applicable to | site: | | | | | | | | Street Address of Site (if app | licable): | | | | | | | | Planning Area (PA) and/
or Tract Number(s) for Site:
Date WQMP Prepared (and | rovised if applicab | Lot Numbers (if Site is a portion of a tract): | | | | | | | Date WQMP Prepared (and I | revised if applicab | ie): | | | | | | | III. New Owner/ New Responsible Party Information | | | | | | | | | Company/ Individual Name: | | Contact Person: | | | | | | | Street Address: | | Title: | | | | | | | City: | State: | ZIP: | Phone: | | | | | | IV. Ownership Transfer Information | | | | | | | | | General Description of Site T
New Owner: | ransferred to | General Description of Portion of Project/
Parcel Subject to WQMP Retained by Owner
(if any): | | | | | | | Lot/ Tract Numbers of Site Transferred to New Owner: | |--| | Remaining Lot/ Tract Numbers Subject to WQMP Still Held by Owner (if any): | | Date of Ownership Transfer: | Note: When the Previous Owner is transferring a Site that is a portion of a larger project/ parcel addressed by the WQMP, as opposed to the entire project/parcel addressed by the WQMP, the General Description of the Site transferred and the remainder of the project/ parcel no transferred shall be set forth as maps attached to this notice. These maps shall show those portions of a project/ parcel addressed by the WQMP that are transferred to the New Owner (the Transferred Site), those portions retained by the Previous Owner, and those portions previously transferred by Previous Owner. Those portions retained by Previous Owner shall be labeled as "Previously Transferred". ## V. Purpose of Notice of Transfer The purposes of this Notice of Transfer of Responsibility are: 1) to track transfer of responsibility for implementation and amendment of the WQMP when property to which the WQMP is transferred from the Previous Owner to the New Owner, and 2) to facilitate notification to a transferee of property subject to a WQMP that such New Order is now the Responsible Party of record for the WQMP for those portions of the site that it owns. ## VI. Certifications ## A. Previous Owner I certify under penalty of law that I am no longer the owner of the Transferred Site as described in Section II above. I have provided the New Owner with a copy of the WQMP applicable to the Transferred Site that the New Owner is acquiring from the Previous Owner. | Printed Name of Previous Owner Representative: | Title: | |--|--------| | Signature of Previous Owner Representative: | Date: | ## B. New Owner I certify under penalty of law that I am the owner of the Transferred Site, as described in Section II above, that I have been provided a copy of the WQMP, and that I have informed myself and understand the New Owner's responsibilities related to the WQMP, its implementation, and Best Management Practices associated with it. I understand that by signing this notice, the New Owner is accepting all ongoing responsibilities for implementation and amendment of the WQMP for the Transferred Site, which the New Owner has acquired from the Previous Owner. | Printed Name of New Owner Representative: | Title: | | | | |---|--------|--|--|--| | Signature: | Date: | | | | ## PUBLIC EDUCATION
MATERIALS (Pending – To be provided in the Final WQMP) ## POST-CONSTRUCTION BMP FACT SHEETS (Pending – To be provided in the Final WQMP) ## FINAL RESOLUTIONS / CONDITIONS OF APPROVAL (Pending – To be provided in the Final WQMP) ## RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION ## RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION | Toda | y's Date: | |------------------------------------|---| | Name of Person Performing Activity | (Printed): | | | ignature: | | No. 4 | | | BMP NAME
(AS SHOWN IN O&M PLAN) | BRIEF DESCRIPTION OF IMPLEMENTATION, MAINTENANCE, AND INSPECTION ACTIVITY PERFORMED | ## RECORD OF BMP IMPLEMENTATION, MAINTENANCE, AND INSPECTION | loday's Date: | | |--|------| | Performing Activity (Printed): | | | Signature: | | | | | | AME BRIEF DESCRIPTION OF IMPLEMENTATION, O&M PLAN) MAINTENANCE, AND INSPECTION ACTIVITY PERFORMI | 1ED_ | | | | | | | | | | | | | | | | | 6 | | | | | | | | | | |